Attention!
Assembly instructions page 12. Before your first ride please read pages 7-11.

Your bicycle and this bicycle manual comply with the safety requirements of the European standard EN 14766 for mountain bicycles.
COMPONENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frame</td>
</tr>
<tr>
<td>a</td>
<td>Top tube</td>
</tr>
<tr>
<td>b</td>
<td>Down tube</td>
</tr>
<tr>
<td>c</td>
<td>Seat tube</td>
</tr>
<tr>
<td>d</td>
<td>Chainstay</td>
</tr>
<tr>
<td>e</td>
<td>Rear stay</td>
</tr>
<tr>
<td>f</td>
<td>Rear shock</td>
</tr>
<tr>
<td>2</td>
<td>Saddle</td>
</tr>
<tr>
<td>3</td>
<td>Seat post</td>
</tr>
<tr>
<td>4</td>
<td>Seat post clamp</td>
</tr>
<tr>
<td>5</td>
<td>Rear brake</td>
</tr>
<tr>
<td>6</td>
<td>Cassette sprockets</td>
</tr>
<tr>
<td>7</td>
<td>Rear derailleur</td>
</tr>
<tr>
<td>8</td>
<td>Chain</td>
</tr>
<tr>
<td>9</td>
<td>Front derailleur</td>
</tr>
<tr>
<td>10</td>
<td>Chainring</td>
</tr>
<tr>
<td>11</td>
<td>Crank set</td>
</tr>
<tr>
<td>12</td>
<td>Pedal</td>
</tr>
<tr>
<td>13</td>
<td>Stem</td>
</tr>
<tr>
<td>14</td>
<td>Handlebars</td>
</tr>
<tr>
<td>15</td>
<td>Brake lever</td>
</tr>
<tr>
<td>16</td>
<td>Shift lever</td>
</tr>
<tr>
<td>17</td>
<td>Headset</td>
</tr>
<tr>
<td>18</td>
<td>Suspension fork:</td>
</tr>
<tr>
<td>I</td>
<td>Fork crown</td>
</tr>
<tr>
<td>II</td>
<td>Stanchion tube</td>
</tr>
<tr>
<td>III</td>
<td>Lower leg</td>
</tr>
<tr>
<td>IV</td>
<td>Drop-out</td>
</tr>
<tr>
<td>19</td>
<td>Front brake</td>
</tr>
<tr>
<td>20</td>
<td>Rotor</td>
</tr>
<tr>
<td>21</td>
<td>Quick-release</td>
</tr>
<tr>
<td>22</td>
<td>Rim</td>
</tr>
<tr>
<td>23</td>
<td>Spoke</td>
</tr>
<tr>
<td>24</td>
<td>Tyre</td>
</tr>
<tr>
<td>25</td>
<td>Hub</td>
</tr>
<tr>
<td>26</td>
<td>Valve</td>
</tr>
</tbody>
</table>

GENERAL NOTES ON THIS MANUAL

PAY PARTICULAR ATTENTION TO THE FOLLOWING SYMBOLS:

- ! This symbol warns you about actions that could lead to damage to property or the environment.
- ! This symbol signifies information about how to handle the product or refers to a passage in the operating instructions that deserves your special attention.
- ! This symbol indicates an imminent risk to your life or health unless you comply with the instructions given or take preventive measures.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Welcome</td>
</tr>
<tr>
<td>4</td>
<td>Intended use</td>
</tr>
<tr>
<td>7</td>
<td>Before your first ride</td>
</tr>
<tr>
<td>10</td>
<td>Before every ride</td>
</tr>
<tr>
<td>12</td>
<td>Assembly from the BikeGuard</td>
</tr>
<tr>
<td>24</td>
<td>Packing your Canyon bike</td>
</tr>
<tr>
<td>25</td>
<td>How to use quick-releases and thru axles</td>
</tr>
<tr>
<td>25</td>
<td>How to securely mount the wheel</td>
</tr>
<tr>
<td>27</td>
<td>How to mount thru axle wheels</td>
</tr>
<tr>
<td>30</td>
<td>What to bear in mind when adding components or making changes?</td>
</tr>
<tr>
<td>31</td>
<td>Special characteristics of carbon</td>
</tr>
<tr>
<td>32</td>
<td>Care instructions</td>
</tr>
<tr>
<td>33</td>
<td>Special features of freeride bikes</td>
</tr>
<tr>
<td>35</td>
<td>After an accident</td>
</tr>
<tr>
<td>37</td>
<td>Framesets – assembly technical data</td>
</tr>
<tr>
<td>42</td>
<td>Adjusting the Canyon bike to the rider</td>
</tr>
<tr>
<td>43</td>
<td>Adjusting the saddle to the correct height</td>
</tr>
<tr>
<td>45</td>
<td>Adjusting the height of the handlebars</td>
</tr>
<tr>
<td>45</td>
<td>AHEADSET®-stems or threadless system</td>
</tr>
<tr>
<td>48</td>
<td>Fore-to-aft position and saddle tilt</td>
</tr>
<tr>
<td>49</td>
<td>Adjusting saddle position and tilt</td>
</tr>
<tr>
<td>51</td>
<td>Handlebars and brake lever adjustment</td>
</tr>
<tr>
<td>51</td>
<td>Adjusting the handlebar position by turning the handlebar</td>
</tr>
<tr>
<td>53</td>
<td>Adjusting the brake lever reach</td>
</tr>
<tr>
<td>54</td>
<td>The pedal systems</td>
</tr>
<tr>
<td>54</td>
<td>Different systems at a glance - how they work</td>
</tr>
<tr>
<td>56</td>
<td>Adjustment and maintenance</td>
</tr>
<tr>
<td>57</td>
<td>The brake system</td>
</tr>
<tr>
<td>58</td>
<td>Brakes – how they work and what to do about wear</td>
</tr>
<tr>
<td>59</td>
<td>Checking and readjusting disc brakes</td>
</tr>
<tr>
<td>59</td>
<td>Functional check</td>
</tr>
<tr>
<td>60</td>
<td>AVID, FORMULA, MAGURA and SHIMANO brakes</td>
</tr>
<tr>
<td>61</td>
<td>The gears</td>
</tr>
<tr>
<td>62</td>
<td>The gears - how they work and how to use them</td>
</tr>
<tr>
<td>65</td>
<td>Checking and readjusting the gears</td>
</tr>
<tr>
<td>65</td>
<td>Rear derailleur</td>
</tr>
<tr>
<td>65</td>
<td>Adjustment of limit stops</td>
</tr>
<tr>
<td>67</td>
<td>Front derailleur</td>
</tr>
<tr>
<td>68</td>
<td>Crank gear</td>
</tr>
<tr>
<td>68</td>
<td>Chain maintenance</td>
</tr>
<tr>
<td>69</td>
<td>Chain wear</td>
</tr>
<tr>
<td>70</td>
<td>The wheels - tyres, inner tubes and air pressure</td>
</tr>
<tr>
<td>73</td>
<td>Rim trueness, spoke tension</td>
</tr>
<tr>
<td>74</td>
<td>Wheel fastening with quick-releases</td>
</tr>
<tr>
<td>74</td>
<td>Wheel fastening with thru axle system</td>
</tr>
<tr>
<td>75</td>
<td>Repairing punctures</td>
</tr>
<tr>
<td>76</td>
<td>Wheel removal</td>
</tr>
<tr>
<td>76</td>
<td>Removing clincher and folding tyres</td>
</tr>
<tr>
<td>77</td>
<td>Mounting clincher and folding tyres</td>
</tr>
<tr>
<td>79</td>
<td>Removing tubeless/UST tyres</td>
</tr>
<tr>
<td>79</td>
<td>Repairing tubeless/UST tyres</td>
</tr>
<tr>
<td>80</td>
<td>Mounting tubeless/UST tyres</td>
</tr>
<tr>
<td>81</td>
<td>Mounting wheels</td>
</tr>
<tr>
<td>82</td>
<td>The headset</td>
</tr>
<tr>
<td>82</td>
<td>Checking and readjusting</td>
</tr>
<tr>
<td>83</td>
<td>Threadless headset: AHEADSET®</td>
</tr>
<tr>
<td>84</td>
<td>Suspension</td>
</tr>
<tr>
<td>84</td>
<td>Glossary - suspension</td>
</tr>
<tr>
<td>85</td>
<td>The suspension fork</td>
</tr>
<tr>
<td>85</td>
<td>How suspension forks work</td>
</tr>
<tr>
<td>86</td>
<td>Adjustment and maintenance</td>
</tr>
<tr>
<td>89</td>
<td>Full-suspension</td>
</tr>
<tr>
<td>89</td>
<td>What to bear in mind when adjusting the saddle</td>
</tr>
<tr>
<td>89</td>
<td>Adjustment and maintenance</td>
</tr>
<tr>
<td>92</td>
<td>Transport of your Canyon bike</td>
</tr>
<tr>
<td>94</td>
<td>General notes on care and inspection</td>
</tr>
<tr>
<td>94</td>
<td>Washing and cleaning your Canyon</td>
</tr>
<tr>
<td>96</td>
<td>Safekeeping and storing your Canyon</td>
</tr>
<tr>
<td>97</td>
<td>Servicing and inspection</td>
</tr>
<tr>
<td>98</td>
<td>Service and maintenance schedule</td>
</tr>
<tr>
<td>100</td>
<td>Recommended tightening torques</td>
</tr>
<tr>
<td>104</td>
<td>Legal requirements for riding on public roads</td>
</tr>
<tr>
<td>107</td>
<td>Guarantee</td>
</tr>
<tr>
<td>108</td>
<td>Crash replacement</td>
</tr>
</tbody>
</table>
DEAR CANYON CUSTOMER,

In this manual we have compiled for you lots of tips on how to use your Canyon bike, instructions for maintenance and care, plus a wealth of things worth knowing on bicycle technology. Please read this manual thoroughly. You will find it worth your while; even if you have cycled all your life and feel like a veteran with your new bike. Bicycle technology has developed tremendously over the past few years.

For your enjoyment and safety when cycling, please read the complete first part of this manual thoroughly and
- strictly follow the assembly instructions given in chapter "Assembly from the BikeGuard".
- see chapter "Before your first ride" and
- read chapter "Intended use" to read up on how to use your new bike and on the permitted overall weight (rider, clothing and baggage) and
- carry out the minimum functional check before every ride. For more details on how to proceed, read chapter "Before every ride" of this manual. Do not ride your bike unless it has passed the functional check one hundred per cent!

On the digital data medium enclosed with this manual you will find a number of maintenance and repair routines in detail. When carrying out these routines, be aware that the instructions and information provided in your manual only refer to this Canyon bike and that they do not necessarily apply to other bikes. Due to numerous designs and model changes, it may be that some of the routines are not described in every detail. For this reason be sure also to observe the operating instructions of our component suppliers enclosed with the BikeGuard.

Note that the instructions and tips may require further explanation depending on various factors, such as the experience and skills of the person doing the work or the tools being used, and some jobs may require additional (special) tools or measures not described in the manual.

Furthermore, you will find numerous service movies on our website www.canyon.com that will help you carry out small repair and maintenance works. For your own safety, never do work on your bicycle unless you feel absolutely sure about it. If you are in doubt or if you have any questions, please contact our service hotline +44 (0) 20 8501 2582!

Please note: This manual cannot teach you all mechanical skills. Even a manual as big as an encyclopedia could not describe every possible combination of available bicycles and components. For this reason this manual focuses on your newly purchased bike and standard components by drawing your attention to important notes and warnings. It does, however, not teach you the basic skills of a bike mechanic or help you assemble a complete bike from the Canyon frameset.

This manual cannot teach you how to ride. For this reason this manual focuses on your newly purchased bike by drawing your attention to the most important notes and warnings. This manual cannot teach you riding a bike or make you familiar with the traffic rules.

Please be aware that cycling is a hazardous activity that requires that the rider stays in control of his or her bike at all times.

Like any sport, bicycling involves risk of injury and damage. By choosing to ride a bike, you assume the responsibility for the risk. Always keep in mind that you have no protection technique around you, which could avoid injuries, such as e.g. the bodywork or the airbag of a car.

Therefore, always ride carefully and respect the other traffic participants.

Never ride under drugs, alcohol or when you are tired. Do not ride with a second person on your bike and never ride without having your hands on the handlebars.

Before you set off please note: Always ride carefully so as not to endanger yourself or others. Please respect nature when touring through forests and meadows. Make it a habit to only ride with appropriate equipment. At least you should wear a properly adjusted bike helmet, sturdy shoes and suitable, bright coloured clothing.

Your Canyon team wishes you lots of fun and enjoyment with your bike!

This manual does not help you to assemble a bicycle from individual parts or to repair it! Technical details in the text and illustrations of this manual are subject to change. This manual conforms with the requirements of the CE-standard EN 14766. This manual is subject to European legislation.

On delivery of the bike, the manufacturer has to attach supplementary manuals. Please visit www.canyon.com for additional manuals.
INTENDED USE

To define the intended purposes for the different types of bicycles, we have classified our bikes in different categories. The purpose of this classification is to define the test requirements complying with the respective stress as early as during the development of our bikes. This is to ensure the highest possible level of safety for the use of our bikes.

It is therefore of major importance that the bikes are not used under conditions beyond the intended use, as this bears the risk that the bikes’ maximum load is exceeded and the frame or other components are damaged. This can result in severe crashes.

The rider’s maximum weight incl. baggage should not exceed 120 kg. Under certain circumstances this permissible maximum weight can be further limited by the component manufacturers’ recommendations for use.

The frame of your bike is marked according to one of the following symbols indicating the category your bike belongs to. If you are not sure about the category your bike belongs to, please contact our service centre.

Condition 0
This category is intended for childrens’ bicycles. Children should not ride near precipices, staircases or swimming pools as well as on paths used by automotive mobiles. In general, this applies to bicycles with wheel sizes of 12 to 24 inches.

Condition 1
Bikes of this category are designed for riding on hard-surface roads where the wheels remain in permanent contact to the ground. These are in general road racing bicycles with racing handlebars or straight handlebars, triathlon or time trial bicycles. The rider’s maximum weight incl. baggage should not exceed 120 kg. Under certain circumstances this permissible maximum weight can be further limited by the component manufacturers’ recommendations for use.

Condition 2
Bicycles of category 1 and bicycles designed for well paved gravel paths and off-road trails with a slight slope where a short loss of tyre contact with the ground due to small steps can occur. This condition comprises urban and city bicycles as well as cyclo-cross bikes with road racing handlebars and cantilever or disc brakes.

Condition 3
Bikes of this category comprise the bicycles of the categories 1 and 2 and are in addition suitable for rough and unpaved terrains. Sporadic jumps of a maximum height of approx. 60 cm are also included in the field of use of these bicycles. But inexperienced riders doing jumps of this height may land inappropriately, thus increasing the acting forces significantly which may result in damage and injuries. This category is represented by MTB hardtails and full suspension bicycles with short suspension travel.

Condition 4
This category includes bikes of the categories 1 to 3. In addition, bicycles of this category are suitable for very rough and partly blocked terrain with steep slopes and higher speeds as a result thereof. Regular, moderate jumps by experienced riders are no problem for these bicycles. The regular and durable use of the bicycles on North Shore trails and in bike parks should, however, be excluded. Due to the higher stresses, these bicycles should be checked for possible damage after every ride. Full suspension bikes with medium suspension travel are typical for this category.
BEFORE YOUR FIRST RIDE

1. Have you ever ridden a mountain bike? Please note that riding over rough terrain requires concentration, fitness and practice. Make yourself gradually familiar with your new mountain bike in an unfrequented area and only approach the terrain you want to bike on step by step. Attend a riding technique course. For more information visit www.canyon.com

2. Are you familiar with the brake system? Canyon bikes are normally delivered with the left brake lever operating the front brake. Check whether the lever of the front brake is in the position you are used to. If it is not, you will need to train to get used to the new configuration, as inadvertent use of the front brake can throw you off your bike! Have the lever-to-brake assignment changed by an expert.

Your new bike is equipped with modern brakes which may be far more powerful than those you are used to! Due to the specific intended use, some dirt bikes are fitted with only one brake.

Be sure to first practise using the brakes off public roads! Do approach the maximum possible deceleration gradually. For more information about the brakes, read chapter “The brake system”.

3. Are you familiar with the type and functioning of the gears? If not, make yourself familiar with the gears in a place clear of traffic. Make sure not to shift gears on the front and rear derailleur at the same time and not to pedal with too much force when shifting. For more information about the gears, read chapter “The gears”.

Condition 5
This type of use stands for very challenging, highly blocked and extremely steep terrains, which can only be mastered by well-trained riders with technical skills. Rather high jumps at very high speeds as well as the intensive use of specific, identified bike parks or downhill trails are typical for this category.

In the case of these bicycles it must be considered that a thorough check for possible damage is carried out after every ride. Preliminary damage with clearly inferior further stress can result in failure. A regular replacement of safety-relevant components should also be taken into account. Wearing special protectors is strongly recommended. Full suspension bikes with long suspension travel as well as dirt bikes are typical for this category.

If you hold your MTB handlebars by the bar ends, you cannot reach the brake levers as quickly as you would from other positions, and your stopping distance therefore becomes longer. Look well ahead as you ride and be prepared for longer stopping distances.

Keep yourself informed by visiting our always updated website at www.canyon.com. There you will find an illustration visualising the intended use of all Canyon bikes.

Note that the assignment of brake lever to brake caliper can vary from country to country. Check the brake assignment. If it does not comply with your habits, we recommend you having an expert change the lever-to-brake assignment!

Canyon bikes are not approved for mounting pannier racks. The only way of riding with baggage is by using a special backpack.

Canyon bikes are not approved for mounting child carriers.

Canyon bikes are not approved for towing trailers.

Due to the specific intended use, some dirt bikes are fitted with only one brake.

Derailleur gears

Too hard braking with front brake; do not imitate!

Bikes with carbon seat posts are not approved for mounting pannier racks. The only way of riding with baggage is by using a special backpack.

Keep yourself informed by visiting our always updated website at www.canyon.com. There you will find an illustration visualising the intended use of all Canyon bikes.

Note that the assignment of brake lever to brake caliper can vary from country to country. Check the brake assignment. If it does not comply with your habits, we recommend you having an expert change the lever-to-brake assignment!

Canyon bikes are not approved for mounting child carriers.

Canyon bikes are not approved for towing trailers.

Due to the specific intended use, some dirt bikes are fitted with only one brake.
4. Are frame size, saddle and handlebars properly adjusted? Stand over the top tube of your bike and check whether there is enough clearance between the top tube and your crotch (at least one handbreath). If there is not, read the more detailed chapter of the manual further below or on the enclosed CD or contact our service hotline at +44 (0) 20 8501 2582. Riding with a too big frame may cause injuries, when getting off your bike quickly! With cross-country and marathon bikes the saddle should be set to a height from which you can just reach the pedal in its lowest position with your heel. Check whether your toes reach to the floor when you are sitting on the saddle. With all mountain, enduro and freeride bikes the saddle is normally brought to a lower position. A lower saddle position is particularly advisable when riding downhill. For more information about the saddle position, read chapter “Adjusting the Canyon bike to the rider”.

5. Have you ever tried clipless or step-in pedals and the shoes they go with? Before riding with clipless pedals for the first time, carefully practice locking one shoe onto a pedal and disengaging it while the bike is stationary. Lean against a wall when practising so that you do not topple over. Adjust the locking and release mechanism, if necessary. Be sure to first read the operating instructions that you will find in the BikeGuard. For more information about the pedals, read chapter “The pedal systems”.

6. Note that you should only use your Canyon for its intended purpose! Mountain bikes intended for cross-country and marathon use are not suitable for hard downhill rides on blocked terrain or jumps etc. For all mountain or enduro use we recommend our special models. The Torque models are also suitable for freeriding. Please keep in mind that though looking easy the tricks of a professional actually require a lot of training and experience. For your own safety, do not overestimate your riding abilities. In general, Canyon bikes are designed for an overall load (rider and baggage) of 120 kg. Make sure not to exceed this limit. For more information about the use, read chapter “Intended use”.

7. Are parts of your Canyon bike made of carbon? Please note that this material requires special care and particular use. In any case, be sure to read chapter “Special characteristics of carbon”.

8. If you have bought a suspension bicycle, you should check the air pressure of the suspension fork. If necessary, use the pump included in the BikeGuard for the adjustment. An improperly adjusted suspension fork is liable to malfunction or damage. In any case they will impair the performance of your bicycle as well as your safety whilst riding. For more information read chapters “Suspension fork” and “Full-suspension”.

! A lack of practice when using clipless pedals or too much spring tension in the mechanism can lead to a very firm connection, from which you cannot quickly step out! Risk of an accident!

Canyon mountain bikes are high-end sports equipment, representing lightweight construction as pinnacle of engineering. Also be a professional when it comes to handling of the material. Misuse, unprofessional assembly or insufficient servicing can render the racing machine unsafe. Risk of an accident!
BEFORE EVERY RIDE

CHECK THE FOLLOWING POINTS BEFORE EVERY RIDE:

1. Are the quick-release levers of the front and rear wheel, seat post and other components as well as of available thru axles properly closed? For more information, read chapter “How to use quick-releases and thru axles”.

2. Are the tyres in good condition and do they have sufficient pressure? Spin the wheels to check whether the rims are true. Also look out for tyres with ruptured sides or broken axles or spokes while you do this. For more information, read chapter “The wheels - tyres, inner tubes and air pressure”.

3. Test the brakes while standing by firmly pulling brake levers towards the handlebars. A pressure point should be reached after the lever has only travelled a short distance; the lever must, however, not touch the handlebars! Make sure no liquid leaks out from hydraulic (disc) brakes. For more information about the brakes, read chapter “The brake system”.

4. If you intend to ride on public roads or in the dark, check the lighting set, see chapter “Legal requirements”.

5. Let your Canyon bounce on the ground from a small height. If there is any rattling, see where it comes from. Check the bearings and bolted connections, if necessary.

6. Due to their intended use, freeride bikes, such as the Strive or the Torque, must withstand particular strains. If you are owner of such a bike, be sure to check it for impairments and material fatigue, such as cracks, dents and bends, before every ride.

7. The major accessory for a successful cycling tour is a small tool bag fitted underneath the saddle. The tool kit should include two plastic tyre levers, the most commonly used Allen keys, a spare tube, a tyre repair kit, your mobile phone and a little cash. Do not forget a tyre pump mounted to the frame.

8. Take a sturdy lock with you, if you intend to leave your Canyon in a public area. The only way to protect your Canyon against theft in a public area is to lock it to an immovable object!

34 BEFORE EVERY RIDE

To safe your Canyon from damage, please observe the maximum overall load and the regulations regarding the transport of baggage and children given in chapter “Intended use”. Furthermore, we recommend reading chapter “Transport of your Canyon bike” before transporting your Canyon by car or plane.

Never ride without lighting in the dark

During use your Canyon is undergoing stress resulting from the surface of the road and through the rider’s action. Due to these dynamic loads, the different parts of your bike react with wear. Please check your Canyon regularly for wear marks as well as for scratches, dents, bent parts and incipient cracking. Components that have passed their normal service life may suddenly fail. Have your Canyon inspected regularly so that components can be replaced, if necessary. For more information on maintenance and operational safety, read chapters “General notes on care and inspection”, “Recommended tightening torques” and “Service and maintenance schedule”.

Emergency kit
ASSEMBLY FROM THE BIKEGUARD

Assembling the bike from the BikeGuard is no witchcraft, but you should proceed with care and deliberation. Unprofessional assembly can render the bike unsafe.

First we should like to make you familiar with the various components of your Canyon.

Unfold the front cover of this manual. Here you will find the illustration of a Canyon bike showing all the essential components. Leave the page unfolded as you read so that you can easily locate the components as they are referred to in the text.

CHECKING THE CONTENTS OF THE BIKEGUARD

The BikeGuard contains the assembled frame with all add-on parts as well as the wheel set, the saddle and a box with small parts, e.g. quick-releases, reflectors and pedals, as the case may be.

UNPACKING

Remove the padding (cardboard boxes), if available, and take the wheels out of the BikeGuard.

Undo the saddle from the BikeGuard. First, remove the protective film, if available, from the seat post.

When using a box cutter make sure neither to damage the component nor to hurt yourself. Make it a rule to cut away from you and the component!

The easiest and safest way to assemble the bike is when you use a workstand or ask someone to help you.

Lift the frame carefully off the BikeGuard and take out the cardboard box with the small parts that you will find on the bottom or the side of the BikeGuard.

Release the quick-release or the seat post binder bolt. Read chapter “How to use quick-releases and thru axles” beforehand.

Before mounting the seat post to the frame, make sure the seat tube is absolutely free of sharp edges and burrs.

Mount an aluminium seat post or ask a helper to hold your Canyon during the assembly. Clean and deburr the seat tube, if necessary. You should be able to insert the seat post easily into the frame without pressing or turning.

Assemble your Canyon by using the Canyon torque wrench enclosed with the BikeGuard.

Keep the entire packaging material as well as the BikeGuard in a dry place, so you will have everything at hand for a future dispatch of your Canyon or for a travel together with your bike.

Hold the handlebars tight while lifting the frame out to avoid that it drops and gets damaged.
Tighten the quick release or the seat post binder bolt. Take care not to overtighten the seat post binder bolt or quick-release. Please note the details given in chapter “Adjusting the saddle to the correct height” as well as the permitted tightening torques in chapter “General notes on care and inspection” and follow the instructions of the component manufacturers, as well.

Release the clamping bolts of the stem face plate and remove the face plate.

Make sure the handlebars are accurately centred in the stem clamp. Take care that the bowden cables are not twisted or bent, but run in a smooth curve to the cable stops or brakes. Retighten the clamping bolts until they lightly hold the handlebars in place. Do not finish mounting the handlebars until you have mounted the wheels.

Remove both protective caps from either side of the front wheel axle.

Insert the quick-release from the rotor side into the hollow axle of the front wheel. Make sure there is one spring on either side of the hub. When mounting the springs on either side of each wheel, make sure their small-diameter ends face the hub. The quick-release lever is mounted to the left side, i.e. opposite the chain drive.

Assemble your Canyon by using the Canyon torque wrench enclosed with the BikeGuard.

Clamp your Canyon with the aluminium seat post into the workstand or ask a helper to hold your Canyon during the assembly.

Remove the protective film and sleeves from the handlebars. Hold the handlebars tight while you do this so that they do not drop and get damaged.

It is recommended that you remove the protective material in general by hand. In case you do not succeed, carefully use a box cutter or a pair of scissors.

Do not clamp a frame tube or a carbon seat post of your Canyon in the holding jaws of the workstand!

Please note the details given in chapter “Special characteristics of carbon”, as well.

When using a box cutter make sure neither to damage the component nor to hurt yourself. Make it a rule to cut away from you and the component!
Tighten up the counternut of the quick-release until the quick-release lever builds up force when closed. Close the quick-release. Read up on quick-releases in chapter "How to use quick-releases and thru axles"; also observe the enclosed operating instructions of the component manufacturers.

MOUNTING A FRONT WHEEL WITH DISC BRAKES

Remove the transport lock from the front wheel brake. For more information about brakes, read chapter "The brake system". If your Canyon has disc brakes, check before mounting the wheel whether the brake pads rest snugly in their seats in the brake calliper body. This is the case when the gap between the brake pads is parallel and the wear indicators are in their correct position.

Mount the front wheel and make sure you guide the rotor between the brake pads carefully. Close the quick-release and verify that the wheel is securely fixed. Read chapter "How to use quick-releases and thru axles" beforehand.

Make sure the wheel is correctly seated in the dropouts and accurately centred between the fork legs. Make sure the quick-release lever and the drop-out safety-tabs are properly closed.

New brake pads of disc brakes have to be bedded in before they reach their optimum braking performance. For more information read chapter "The brake system".

After mounting the wheel and tightening the quick-release pull the brake lever several times and spin the wheel subsequently. The rotor should not drag on the brake caliper or on the brake pads.

MOUNTING A REAR WHEEL WITH DISC BRAKES

Open the quick-release at the rear axle, remove the board and pull the quick-release off the board. Proceed as you did when mounting the front wheel. Verify, in this case as well, the correct position of the small springs. Read up on quick-releases in chapter "How to use quick-releases and thru axles".

Remove the protective film from both chainstays. It is recommended that you remove the protective material by hand. In case you do not succeed, carefully use a box cutter or a pair of scissors.

Actuate the right shift lever until the rear derailleur is in its outermost position. Pull the rear derailleur slightly to the rear, position the chain on the outermost sprocket and mount the rear wheel. Make sure you guide the rotor between the brake pads carefully. Read chapter “How to use quick-releases and thru axles” beforehand.

Open the quick-release at the rear axle, remove the board and pull the quick-release off the board. Proceed as you did when mounting the front wheel. Verify, in this case as well, the correct position of the small springs. Read up on quick-releases in chapter "How to use quick-releases and thru axles".

Remove the transport lock from the rear wheel brake. For more information about brakes, read chapter "The brake system". If your Canyon has disc brakes, check before mounting the wheel whether the brake pads rest snugly in their seats in the brake calliper body. This is the case when the gap between the brake pads is parallel and the wear indicators are in their correct position.
Close the quick-release and verify that the wheel is securely fixed. Read chapter “How to use quick-releases and thru axles” beforehand.

The rotor should not drag on the brake caliper or on the brake pads. Spin both wheels to make sure they run true. For more information, read chapter “The wheels - tyres, inner tubes and air pressure”.

Verify that the rear wheel is accurately centred between the rear stays. Make sure the quick-release lever and the drop-out safety-tabs are properly closed.

CHECKING THE BRAKE AND THE GEARS

After mounting the wheel and tightening the quick-release pull the brake lever several times and spin the wheel subsequently.

Check the proper functioning of the gears. Shift through all gears and make sure the rear derailleur does not collide with the spokes when the chain runs on the largest sprocket. Read up on how to adjust the gears in chapter “The gears”. After the wheel mounting do a brake test in stationary. Actuating the brake lever should generate a clear-cut braking response before the lever touches the handlebars.

The rotor should not drag on the brake caliper or on the brake pads. Spin both wheels to make sure they run true. For more information, read chapter “The wheels - tyres, inner tubes and air pressure”.

Start by screwing the bolt into the derailleur hanger without tightening it. Mount the rear wheel, as described in chapter “How to use quick-releases and thru axles”.

To ensure a secure transport the Strive is supplied with the rear derailleur dismounted. The rear derailleur can be assembled with a few simple steps.

The rear derailleur is mounted to the derailleur hanger. This derailleur hanger connects the rear derailleur to the frame. The derailleur hanger is mounted to the right drop-out at the Strive’s rear frame.

Slide the greased bolt through the drop-out.

Tighten the derailleur hanger by using the torque wrench supplied with the Strive.

Do observe the appropriate torque value of 6 Nm.

New brake pads of disc brakes have to be bedded in.
MOUNTING THE PEDALS

Before mounting the pedals, check the marking on the pedal axles first. “R” stands for right pedal and “L” for left pedal. Note that the left pedal has a left-hand thread that has to be tightened contrary to the direction you are accustomed to, i.e. anticlockwise.

Apply a little grease on the pedal threads before screwing in the pedals.

Screw each pedal manually into the thread of its crank by two to three full turns.

Continue by using a pedal spanner to tighten the pedals firmly.

Check the reliable fit of the pedals after about 100 km (60 miles). Pedals can come loose, and this can destroy the thread and throw the rider off his bike. Also check the reliable fit of the other bolts according to the prescribed tightening torques.

Read up on the road traffic regulations in the country where you use the mountain bike.

HOW TO INFLATE THE SUSPENSION FORK

Before transport the suspension fork was completely deflated. The suspension fork has to be filled with the proper air pressure.

Remove the cap of your suspension fork.

Inflate the suspension fork with the special pump enclosed with the BikeGuard, according to the recommendations on the spring rate of the fork manufacturer. Read up on suspension forks in chapter “The suspension fork”.

Improperly adjusted suspension forks are liable to malfunction or damage to the suspension fork.

You will find the operating instructions of the fork manufacturer on the enclosed CD. Read them thoroughly before inflating the suspension fork!

HOW TO INFLATE THE REAR SHOCK

If you have a full-suspension mountain bike you have to check the air pressure.

Open the cap of your rear shock.

Inflate the rear shock with the special pump enclosed with the BikeGuard, according to the recommendations of the rear shock manufacturer. Read up on the adjustment of your rear shock in chapter “Full-suspension”.

Improperly adjusted rear shocks are liable to malfunction or damage to the rear shock.

You will find the operating instructions of rear shock on the enclosed CD. Read them thoroughly before inflating the suspension fork!
CHECKING AND ADJUSTING

Never ride your Canyon with the minimum mark of the seat post being visible.

Adjust the position of the saddle and handlebars and check that the handlebars, grips and seat post are securely fastened, as described in chapter “Adjusting the Canyon bike to the rider”.

Inflate both tyres to the pressure indicated on the side of the tyres. Read up on tyres and inner tubes in chapter “The wheels - tyres, inner tubes and air pressure”. Finish the assembly by carrying out thoroughly the tests described in chapter “Before your first ride”.

Fix the white reflector to the handlebars and the red reflector to the seat post.

Slide your seat post into the seat tube beyond its minimum mark and make sure its end reaches beyond the top tube.

Take the chainstay protection out of the small part box and fit it around the chainstay.

Finish by mounting the spoke reflectors. Make sure that both reflectors of either wheel are fixed to the spokes opposite to one another.

After completing the assembly and checks it is essential to give your Canyon a test ride in a level, unfrequented area (e.g. in a parking lot)! Wrong assembly or improper adjustments that become apparent in road traffic or during off-road use can make you lose control of your Canyon!

Check the reliable fit of all bolts once again according to the prescribed tightening torques after 100 to 300 km (60 to 180 miles). For more information, read chapters “General notes on care and inspection”, “Recommended tightening torques” and “Service and maintenance schedule”.
If you pack your Canyon, e.g. to send it in for servicing to our workshop, or if you want to take it with you on holidays, you must bear in mind a few things to bring your bike safe and sound to destination.

Your BikeGuard contains the packing instructions „How to pack your mountain bike“. Strictly follow these instructions, whenever you pack your bike.

Our packing instructions that will help you pack your Canyon step-by-step are also posted at our website www.canyon.com.

For travelling with your bike by plane pack your bike either into the Canyon BikeGuard or use a suitable bike case, e.g. the Canyon BikeShuttle.

For a transport by car be sure to secure your bike appropriately in order to avoid any shifting inside the car. If you are in doubt or if you have any questions, read the more detailed chapter of the manual further below or on the enclosed CD or contact our service hotline at +44 (0) 20 8501 2582.

HOW TO USE QUICK-RELEASES AND THRU AXLES

Although the use of quick-releases is very easy, they have repeatedly been the cause of accidents as a result of a wrong handling.

Quick-release retention mechanisms essentially consist of two manipulable parts:

- The hand lever on one side of the hub which creates a clamping force via a cam when you close it.
- The tightening nut on the other side of the hub with which to set the initial tension on the threaded rod.

HOW TO SECURELY MOUNT THE WHEEL

- Open the quick-release. You should now be able to read “OPEN” on the lever.
- Move the lever back, as if to close it. Now you should be able to read “CLOSE” on the outside of the lever. From the start of the closing movement up to about the first half of its travel the lever should move very easily, i.e. without clamping the wheel. Over the second half of its travel, the force you need to move it, should increase considerably. Towards the end of its travel the lever should be very hard to move. Use the ball of your thumb while your fingers pull on an immovable part such as the fork or frame, but not on a rotor or spoke, to push it in all the way. In its end position the lever should be parallel to the bike, i.e. it should not stick out to the side. The lever must lie close to the frame so that it cannot be opened accidentally.
- To check whether the lever is securely locked try to turn it while it is closed.

PACKING QUICK-RELEASES AND THRU AXLES

How to Pack Quick-RELEASES AND THRU AXLES

Although the use of quick-releases is very easy, they have repeatedly been the cause of accidents as a result of a wrong handling.

Quick-release retention mechanisms essentially consist of two manipulable parts:

- The hand lever on one side of the hub which creates a clamping force via a cam when you close it.
- The tightening nut on the other side of the hub with which to set the initial tension on the threaded rod.

HOW TO SECURELY MOUNT THE WHEEL

- Open the quick-release. You should now be able to read “OPEN” on the lever.
- Move the lever back, as if to close it. Now you should be able to read “CLOSE” on the outside of the lever. From the start of the closing movement up to about the first half of its travel the lever should move very easily, i.e. without clamping the wheel. Over the second half of its travel, the force you need to move it, should increase considerably. Towards the end of its travel the lever should be very hard to move. Use the ball of your thumb while your fingers pull on an immovable part such as the fork or frame, but not on a rotor or spoke, to push it in all the way. In its end position the lever should be parallel to the bike, i.e. it should not stick out to the side. The lever must lie close to the frame so that it cannot be opened accidentally.
- To check whether the lever is securely locked try to turn it while it is closed.

PACKING QUICK-RELEASES AND THRU AXLES

Although the use of quick-releases is very easy, they have repeatedly been the cause of accidents as a result of a wrong handling.

Quick-release retention mechanisms essentially consist of two manipulable parts:

- The hand lever on one side of the hub which creates a clamping force via a cam when you close it.
- The tightening nut on the other side of the hub with which to set the initial tension on the threaded rod.

HOW TO SECURELY MOUNT THE WHEEL

- Open the quick-release. You should now be able to read “OPEN” on the lever.
- Move the lever back, as if to close it. Now you should be able to read “CLOSE” on the outside of the lever. From the start of the closing movement up to about the first half of its travel the lever should move very easily, i.e. without clamping the wheel. Over the second half of its travel, the force you need to move it, should increase considerably. Towards the end of its travel the lever should be very hard to move. Use the ball of your thumb while your fingers pull on an immovable part such as the fork or frame, but not on a rotor or spoke, to push it in all the way. In its end position the lever should be parallel to the bike, i.e. it should not stick out to the side. The lever must lie close to the frame so that it cannot be opened accidentally.
- To check whether the lever is securely locked try to turn it while it is closed.
QUICK-RELEASES AND THRU AXLES

- If you can turn the lever around, the wheel is not securely fastened. Open the lever again and screw the tightening nut clockwise by half a turn to increase the initial tension.
- Close the lever again and check it again for tightness. If the lever can no longer be turned, it is properly fastened.
- Finally lift the bike a few centimetres from the ground so that the wheel is suspended and hit the tyre from above. If it is properly fastened, the wheel will remain firmly fixed in the drop-outs of the frame.

If your seat post is equipped with a quick-release mechanism, check whether the saddle is firmly fixed by trying to twist it relative to the frame.

If you have disc brakes, you should under no account replace the standard quick-release with a lightweight substitute.

As an anti-theft measure you can replace the quick-releases by special locks. They can only be opened and closed with a special, coded key or an Allen key. If you are in doubt or if you have any questions, please contact our service hotline +44 (0) 20 8501 2582!

HOW TO MOUNT THRU AXLE WHEELS

Thru axles are mounted when the bicycle has to withstand high stress occurring e.g. during freeriding, downhill riding etc. or jumps. They provide suspension forks with a suitable stiffness.

There is currently a wide range of thru axle systems available on the market. Some systems are tightened with quick-releases. Other systems may require special tools for assembly or disassembly.

If you are in doubt or if you have any questions, please contact our service hotline +44 (0) 20 8501 2582!

With the conventional thru axle system slide the thru axle through fork and hub in a way that the head of the Allen bolt comes to a rest on the right side, seen in direction of motion. Let the fork retract a few times when you have mounted the axle to make sure it is not canted. Screw the nut onto the axle and tighten it. Then tighten the four Allen bolts at the front side of the fork to clamp the axle tight. Check the bolts after about one to two hours of riding and after that every 20 hours.

If your bike is equipped with a Maxle thru axle system with quick-releases, put the wheel into the fork and mount the rotor in the brake caliper. Bring the wheel into the right position between the drop-outs and slide the axle with open Maxle quick-release levers from the right side through the drop-out and the hub.

If your bike has disc brakes, you should on no account replace the standard quick-release with a lightweight substitute.
As soon as the axle thread engages with the thread of the left fork leg, close it by turning it clockwise. Close the Maxle thru axle quick-release lever like a usual quick-release lever. From the start of the closing movement up to about the first half of its travel the lever should move very easily without clamping the wheel, whereas over the second half of its travel the force you need to move it should increase considerably. Towards the end of its travel the lever should be very hard to move. Use the palm of your hand while your fingers pull on an immovable part, such as the fork leg, but not on a spoke or the rotor. In its end position the quick-release lever should be tight so that it can no longer be turned.

The **E-Thru system** has been developed jointly by Shimano and Fox and has a 15 mm thru axle that optimises weight. It is mounted like the Maxle system and also operated with a quick-release lever. The special feature of the E-Thru compared to usual quick-release systems is the firm, bolted connection of the tightening nut to the fork leg on the opposite side of the quick-release lever.

For the removal of the front wheel you may need tools depending on fork manufacturer and thru axle system. To remove the wheel, loosen the axle support at the fork and remove the axle completely from the hub. To remount the front wheel proceed in the reverse order. Make sure all bolts/quick-release systems are tightened properly.

Besides the front thru axle systems, there are also rear thru axle systems, such as the X-12 rear axle system from Syntace. This system combines extreme stiffness with light weight. The X-12 system comes in two different versions:

- The key version (with Allen bolt)
- The QR version (with RWS quick-release lever)

To remove the rear wheel of a Torque and Strive you have to release the bolt positioned on top of the dropout (derailleur hanger mount) by two to three turns. Release the axle (with the quick-release or by using an Allen key depending on the system) and remove it. Now you can remove the rear wheel as you are used to.

Make sure not to insert the axle into the hub before mounting the rear wheel.

Perform the rear wheel mounting in the usual manner. Due to the axle guides the rear wheel is automatically in its correct position and requires no further adjustment. Once you have mounted the rear wheel, insert and tighten the axle.

In the case of the models Torque and Strive tighten the derailleur hanger mount to 6 Nm.

To mount the axle use only the tools recommended by the manufacturer. Make it a rule to use a torque wrench. Tighten carefully by approaching the prescribed maximum torque in small steps (0.5 Nm increments) whilst constantly checking the proper fit of the component. Never exceed the maximum tightening torque indicated by the manufacturer! A too tight fixing of the axle can damage the axle or the fork leg.

Do not use any other tools to fix the axle. A too tight fixing of the axle can damage the axle or the fork leg.

Manufacturers of thru axle systems deliver their products with detailed operating instructions. Read them carefully before removing the wheel or doing any maintenance work.
WHAT TO BEAR IN MIND WHEN ADDING COMPONENTS OR MAKING CHANGES?

Canyon bikes are sport machines which are fitted according to the respective usage. Please note that the mounting of mudguards or such like may impair the functioning and hence the safety whilst riding. Before buying and mounting any accessory, please check whether this particular accessory part matches with your Canyon. With additional bells, horns or lighting accessories, inform yourself thoroughly whether they are permitted and tested and accordingly approved for use on public roads. Battery/accumulator-operated lights have to be marked with the wavy line and the letter “K” (see chapter “Legal requirements”).

If you want to mount a pannier rack or a child seat or trailer, please read chapter “Intended use” beforehand to make sure whether it is permitted. If a mounting is permitted, in general, please contact our service hotline at +44 (0) 20 8501 2582 and ask for suitable models.

Only perform jobs you are absolutely sure of.

Handlebars, stems and forks should only be replaced by a skilled mechanic. Be sure to follow the operating of the accessory manufacturer in any case. When mounting other components and accessories, it is your responsibility to mount the components appropriately. Bring your Canyon to our service workshop, if you have the slightest doubt.

SPECIAL CHARACTERISTICS OF CARBON

Carbon fibre reinforced plastic, also referred to as carbon (or CRP), has a number of special characteristics compared to conventional lightweight materials. Having some knowledge of these characteristics is important so that you can enjoy your high-quality Canyon for many years and have full confidence in its material.

Carbon fibre reinforced plastic has proved its value in road racing with numerous wins. Components made of this material are extremely lightweight and - presupposing proper design, processing and treatment - of outstanding strength and stress resistance.

However, there is one particular drawback of this material – its brittleness. Therefore, when subjected to stress it does not undergo permanent deformation, even though its inner structure may have sustained damage. In the extreme case, the fibres may separate, thus resulting in the so-called delamination and reducing the strength properties of the component. In contrast to steel or aluminium, carbon components that have sustained damage to their inner fibres as a result of excessive stress will show no outwardly visible deformation. Carbon components that have been subjected to overstress are therefore liable to fail during use, possibly causing an accident with unforeseeable consequences. If you have had a critical incident with your bike, we advise you to have the relevant component inspected by our service workshop, or better still, the whole Canyon.

Always park your Canyon carefully and make sure it does not topple over. Carbon frames and parts may already sustain damage by simply toppling over.

Be attentive during riding. If your carbon component produces any creaking, this may indicate a material defect. Stop using your bike and contact our service hotline to discuss the steps to be taken. For your own safety, never ask for CRP components to be repaired! Damaged carbon components should be replaced immediately and prevented from being used by anyone else.

Carbon components should never be exposed to high temperatures, as occurring during powder coating or enamelling. The heat generated by these processes may destroy the component. Do not leave carbon items in a car in direct sunlight for prolonged periods or near sources of heat.

Most clamps of bike carrier systems are potential sources of damage to large-diameter frame tubes! As a result thereof carbon frames may suddenly fail during use. Suitable, special-purpose models are available in the car accessory trade.

Make sure the maximum overall weight of rider, baggage (rucksack) and bicycle does not exceed 100 kg. Carbon wheels are generally not approved for trailer towing!
CARBON CARE INSTRUCTIONS

Components made of carbon reinforced fibre should be cleaned with a soft rag and clear water, to which a little dish liquid may be added, if necessary. Tough stains of oil or grease can be removed with a petroleum-based cleaning agent. Never use degreasing agents containing acetone, trichloroethylene, methyl chloride etc., solvents or non-neutral, chemical or solvent-containing cleaning agents that could attack the surface!

You can use car wax to protect the surface and make it shine. Polishing agents or varnish cleaner contain solid constituents that might attack the surface.

- Cleansing with water and a soft rag

- Protect the exposed areas of your carbon frame (e.g. the underside of the downtube) with special pads against rubbing cables or stone chips.

- Special pads protect carbon from damage

Avoid greasing carbon components. Grease would penetrate the surface of the carbon material, reducing the coefficient of friction and hence impairing the stability of the clamping joint when tightened within the permissible torque range. Once greased carbon fibre may never ever be fixed in a secure and safe way again!

- Avoid greasing carbon components

- Check your carbon component regularly, e.g. when cleaning your bike, for external damage, such as notches, cracks, dents, discolorations etc. If the rag gets caught on something, this area must be examined. Stop using your Canyon. Contact immediately our service hotline at +44 (0) 20 8501 2582.

Like all extremely lightweight components, carbon components have a limited service life. The handlebars, the seat post, the carbon wheels and the stem should therefore be replaced at regular intervals – e.g. every 3 years or after 15,000 km (9,300 miles), depending on frequency and intensity of use – even if they have not been involved in accidents or similar incidents.

- Do not clamp a carbon frame or seat post in the holding jaws of a workstand! The parts may sustain damage. Mount a sturdy (aluminium) seat post instead and use this to clamp the frame, or use a work stand that holds the frame at three points inside the frame triangle or that clamps the fork and bottom bracket shell.

- The components of freeride bikes are exposed to high stress. Check the components of your freeride bike annually and replace the components, if necessary.

- The components of freeride bikes are exposed to high stress. Check the components of your freeride bike annually and replace the components, if necessary.

- Dirt, fourcross, dual slalom, downhill and freeride bicycles are true-bred sports bicycles. For your own safety, do not overestimate your cycling skills. Please note that though looking easy the tricks of a professional are hazardous to your life and limb. Always protect yourself with appropriate and suitable clothing.

FREERIDE BIKES

SPECIAL FEATURES OF FREERIDE BIKES

Freeriding, fourcross, dual slalom and downhill riding are among the most challenging sports that you can perform. Jumps, riding the stairs, downhill races and sharp bends in difficult or extremely rough terrain etc. are an undue stress for rider and material and require a highly durable bicycle with full-suspension. A cross-country, touring or marathon mountain bike would fail under such undue stress and cause a serious accident.

Even though the above-mentioned specialized types of bicycles are built for sport cycling and hard use, their resistance to stress is limited. In particular the following actions may cause an undue stress for the material and result in a failure:

- Incorrect jumps on sharp edges, jumps with a landing on the front wheel, too short jumps or tricks that are not completed before the landing
- Landing on the counter slope or between two slopes; on flat terrain jumps with rotation crossways to the track or with hands not on the handlebars/feet off the pedals
- Undue stress for the chain by riding with too low chain tension
- Undue stress for the wheels by riding with too low air pressure
- Undue stress for the frame and bicycle parts by riding with a too soft suspension or sliding on frame and drop-outs

Check your carbon component regularly, e.g. when cleaning your bike, for external damage, such as notches, cracks, dents, discolorations etc. If the rag gets caught on something, this area must be examined. Stop using your Canyon. Contact immediately our service hotline at +44 (0) 20 8501 2582.

Avoid greasing carbon components. Grease would penetrate the surface of the carbon material, reducing the coefficient of friction and hence impairing the stability of the clamping joint when tightened within the permissible torque range. Once greased carbon fibre may never ever be fixed in a secure and safe way again!

Check your carbon component regularly, e.g. when cleaning your bike, for external damage, such as notches, cracks, dents, discolorations etc. If the rag gets caught on something, this area must be examined. Stop using your Canyon. Contact immediately our service hotline at +44 (0) 20 8501 2582.

Do not clamp a carbon frame or seat post in the holding jaws of a workstand! The parts may sustain damage. Mount a sturdy (aluminium) seat post instead and use this to clamp the frame, or use a work stand that holds the frame at three points inside the frame triangle or that clamps the fork and bottom bracket shell.

Special pads protect carbon from damage

Avoid greasing carbon components. Grease would penetrate the surface of the carbon material, reducing the coefficient of friction and hence impairing the stability of the clamping joint when tightened within the permissible torque range. Once greased carbon fibre may never ever be fixed in a secure and safe way again!

- Avoid greasing carbon components

- Check your carbon component regularly, e.g. when cleaning your bike, for external damage, such as notches, cracks, dents, discolorations etc. If the rag gets caught on something, this area must be examined. Stop using your Canyon. Contact immediately our service hotline at +44 (0) 20 8501 2582.

Like all extremely lightweight components, carbon components have a limited service life. The handlebars, the seat post, the carbon wheels and the stem should therefore be replaced at regular intervals – e.g. every 3 years or after 15,000 km (9,300 miles), depending on frequency and intensity of use – even if they have not been involved in accidents or similar incidents.

- Cleansing with water and a soft rag

- Protect the exposed areas of your carbon frame (e.g. the underside of the downtube) with special pads against rubbing cables or stone chips.

- Special pads protect carbon from damage

Avoid greasing carbon components. Grease would penetrate the surface of the carbon material, reducing the coefficient of friction and hence impairing the stability of the clamping joint when tightened within the permissible torque range. Once greased carbon fibre may never ever be fixed in a secure and safe way again!

- Avoid greasing carbon components

- Check your carbon component regularly, e.g. when cleaning your bike, for external damage, such as notches, cracks, dents, discolorations etc. If the rag gets caught on something, this area must be examined. Stop using your Canyon. Contact immediately our service hotline at +44 (0) 20 8501 2582.

Like all extremely lightweight components, carbon components have a limited service life. The handlebars, the seat post, the carbon wheels and the stem should therefore be replaced at regular intervals – e.g. every 3 years or after 15,000 km (9,300 miles), depending on frequency and intensity of use – even if they have not been involved in accidents or similar incidents.

- Cleansing with water and a soft rag

- Protect the exposed areas of your carbon frame (e.g. the underside of the downtube) with special pads against rubbing cables or stone chips.

- Special pads protect carbon from damage

Avoid greasing carbon components. Grease would penetrate the surface of the carbon material, reducing the coefficient of friction and hence impairing the stability of the clamping joint when tightened within the permissible torque range. Once greased carbon fibre may never ever be fixed in a secure and safe way again!

- Avoid greasing carbon components

- Check your carbon component regularly, e.g. when cleaning your bike, for external damage, such as notches, cracks, dents, discolorations etc. If the rag gets caught on something, this area must be examined. Stop using your Canyon. Contact immediately our service hotline at +44 (0) 20 8501 2582.

Like all extremely lightweight components, carbon components have a limited service life. The handlebars, the seat post, the carbon wheels and the stem should therefore be replaced at regular intervals – e.g. every 3 years or after 15,000 km (9,300 miles), depending on frequency and intensity of use – even if they have not been involved in accidents or similar incidents.

- Cleansing with water and a soft rag

- Protect the exposed areas of your carbon frame (e.g. the underside of the downtube) with special pads against rubbing cables or stone chips.

- Special pads protect carbon from damage

Avoid greasing carbon components. Grease would penetrate the surface of the carbon material, reducing the coefficient of friction and hence impairing the stability of the clamping joint when tightened within the permissible torque range. Once greased carbon fibre may never ever be fixed in a secure and safe way again!

- Avoid greasing carbon components

- Check your carbon component regularly, e.g. when cleaning your bike, for external damage, such as notches, cracks, dents, discolorations etc. If the rag gets caught on something, this area must be examined. Stop using your Canyon. Contact immediately our service hotline at +44 (0) 20 8501 2582.

Like all extremely lightweight components, carbon components have a limited service life. The handlebars, the seat post, the carbon wheels and the stem should therefore be replaced at regular intervals – e.g. every 3 years or after 15,000 km (9,300 miles), depending on frequency and intensity of use – even if they have not been involved in accidents or similar incidents.

- Cleansing with water and a soft rag

- Protect the exposed areas of your carbon frame (e.g. the underside of the downtube) with special pads against rubbing cables or stone chips.

- Special pads protect carbon from damage

Avoid greasing carbon components. Grease would penetrate the surface of the carbon material, reducing the coefficient of friction and hence impairing the stability of the clamping joint when tightened within the permissible torque range. Once greased carbon fibre may never ever be fixed in a secure and safe way again!

- Avoid greasing carbon components

- Check your carbon component regularly, e.g. when cleaning your bike, for external damage, such as notches, cracks, dents, discolorations etc. If the rag gets caught on something, this area must be examined. Stop using your Canyon. Contact immediately our service hotline at +44 (0) 20 8501 2582.
ADJUSTING THE SADDLE TO THE CORRECT HEIGHT

Dirt, freeride, dual slalom and downhill bicycles etc. require different saddle adjustments, according to the specific use. The seating position cannot be compared to that on other bicycles; it is maximum control and movability that counts when riding one of the aforementioned bicycles.

When you set off for a long cycling tour, the saddle should be set to a height which gives maximum pedalling comfort and efficiency. When pedalling, the ball of your big toe should be positioned above the centre of the pedal spindle. With your feet in this position you should not be able to stretch your legs completely straight at the lowest point, otherwise your pedalling will become awkward.

You can check the height of your saddle in the following, simple way. This is best done wearing flat-soled shoes. Sit on the saddle and put one of your heels on the pedal at its lowest point. In this position your leg should be fully stretched and your hips should remain horizontal.

For freeriding, downhill racing etc. the saddle is set to a very low height with a rearward tilt. Ask your trainer, a competent person in your club or contact our service hotline at +44 (0) 20 8501 2582 for the correct seating position.

For detailed instructions on how to adjust the saddle, read chapter “Adjusting the Canyon bike to the rider”.

AFTER AN ACCIDENT

1. Check whether the wheels are still firmly fixed in the drop-outs and whether the rims are still centred with respect to the frame or fork. Spin the wheels to make sure they run true. If the wheel visibly wobbles, it must be centred. For more information, read chapters “The brake system” and “The wheels”.

2. Check whether the handlebars and stem are neither bent nor ruptured and whether they are level and upright. Check whether the stem is firmly fixed in the fork by trying to twist the handlebars relative to the front wheel. Also, briefly lean on the brake levers to make sure the handlebars are firmly fixed in the stem. For more information, see chapters “Adapting the Canyon bike to the rider” and “The headset”.

3. See whether the chain still runs on the chainring and sprockets. If your bike fell over to the chain side, check that the gears still function properly. Ask somebody to lift the bike by the saddle, then gently switch through all the gears. Pay particular attention when switching to the small gears, making sure the rear derailleur does not get too close to the spokes as the chain climbs onto the larger sprockets. If the derailleur or the drop-outs have been bent, this can cause the rear derailleur to collide with the spokes – risk of accident!
AFTER AN ACCIDENT

This in turn can destroy the rear derailleur, the rear wheel or the frame. Check the front derailleur, as a damaged front derailleur can throw off the chain, thus interrupting the power train of the bicycle (see chapter "The gears").

4. Make sure the saddle is not twisted using the top tube or the bottom bracket shell as a reference.

5. Lift your bike up a few centimetres and let it bounce onto the ground. If this causes any sort of noise, search for loosened bolts.

6. Finally, take a good look at the whole bike to detect any deformation, discolouration or cracks.

Only ride back very carefully by taking the shortest possible way, if your bike went through this check without any doubt. Do not accelerate or brake hard and do not ride your bike out of the saddle.

If you are in doubt about the performance of your bike, have yourself picked up by car, instead of risking anything. Back home the bike must be examined thoroughly. Damaged parts must be repaired or replaced. Please read the more detailed chapters of the manual further below or on the enclosed CD or contact our service hotline at +44 (0) 20 8501 2582.

FRAMESETS – ASSEMBLY

Canyon offers the high-quality carbon and aluminium frames as bare frames for individual fitting with components.

Forks for Canyon mountain bike frames must be selected with due consideration to spring travel. If you are in doubt, please call our service hotline at +44 (0) 20 8501 2582.

The person completing and mounting the add-on parts must therefore ensure that all components are compatible and properly mounted. There is a vast variety of available add-on parts, making it impossible for Canyon to cover every conceivable option in this manual. Canyon cannot be held responsible for any component combination possible.

We strongly advise you to carefully read the component manufacturers’ operating instructions, as well. Failures in selecting bike components can, in principle, result in your Canyon being unsafe. We therefore advise you to have your bike assembled by a skilled mechanic or by our service centre. For your own safety, never do any work unless you feel absolutely sure about it.

Carbon components which have suffered from an impact force as well as bent parts made of aluminium may brake without previous warning. They must not be repaired, i.e. straightened, as the risk of breakage would still remain imminent. This applies in particular to forks, handlebars, stems, crank sets, seat posts and pedals. If in doubt, it is always the better choice to have these parts replaced, as your safety comes first.
Frames are delivered ready for assembly, i.e. with threads cut and bearing seats and seat tube faceted. There is no need for any machining on the frame. Do not modify the frame or any of its attachments, e.g. the adjustable cable guides etc., by filing, boring or the like.

Mount all components onto the frame by using high-grade assembly grease (except for carbon seat posts, stems on forks with a carbon steerer tube and all seat posts on carbon frames). This helps to avoid corrosion. If you omit the grease, you may find it impossible to disassemble your Canyon at a later date.

Canyon bikes are delivered with the headset and the fork already mounted.

Tighten the bolts carefully by approaching the maximum permissible torque in small steps. Check the secure seat of the component, as described in the relevant chapters.

For parts with no torque range given, tighten the bolts gradually to the maximum torque and check in between regularly the reliable fit of the component.

All carbon fibres of the Canyon Lux und Ultimate CF-frame were arranged in a way to meet the strength specifications for those directions of force to which they will normally be subjected. For this reason the riveted cable stops must only be subjected to forces as they are exerted by the gear or brake cable. Do not pull on them at an oblique angle or against the direction of the cable, i.e. away from the frame, e.g. in an attempt to alter the effective cable length. This could otherwise cause damage to the frame.

Some components have tightening torque specifications printed or labelled on them. Be sure to observe these specifications. Also follow the component manufacturers’ operating instructions enclosed with the delivery!

A wrongly dimensioned fork can change your bike’s riding behaviour to the point of you losing control of the fork.
BOTTOM BRACKET BEARINGS

All frames: BSA/BSC 1.370x24T,
(Right cup left hand threading!)
Width of bottom bracket shell:
- Mountain bikes: 68 mm
- Torque model: 73 mm
- Pressfit: 92 mm
(or 89.5 mm with 2.5 mm spacer)

Common cartridge bearings can be mounted directly into the bottom bracket shell of all models with high-grade grease. Observe the torque specifications of the bottom bracket manufacturer.

REAR FRAME WIDTH

All mountain bike frames: 135 mm
Rear frame width with X12: 142 mm

REPLACEABLE DERAILLEUR HANGER

All frame models have a sufficiently fastened replaceable derailleur hanger. Observe a tightening torque of 1.5 Nm. Do not exceed the maximum torque of 1.5 Nm.

Expect: Strive 6 Nm

BOTTLE CAGE

Use a maximum torque of 4.5 Nm. Do not exceed the maximum torque of 4.5 Nm.

CABLE STOPS

The cable stops riveted onto the Canyon Ultimate CF and Spectral frame must only be subjected to forces acting in the same direction as the gear or brake cables. Forces acting at an oblique angle or against the direction of the cable can cause damage to the frame.

SEAT POST

When selecting a new seat post make sure it has the same nominal diameter as the frame’s seat tube. You should be able to slide it in easily without pressing or turning. A mismatch between frame and seat post can cause failure of the seat post.

Before mounting the seat post on the frame make sure the seat tube is absolutely free of sharp edges and burrs. If either the seat post or the frame is made of carbon, then both parts have to be free of oil and grease. Clean and deburr the seat tube, if necessary.

Take care not to overtighten the seat post binder bolt or quick-release. Be sure to read the notes given in chapter “Adjusting the saddle to the correct height” as well as the permitted torques in chapter “General notes on care and inspection” and follow the operating instructions of the component manufacturers, as well. Overtightening may cause a seat post failure, resulting in a crash and/or injury of the rider.

Do not exceed the tightening torque of the bearing manufacturer.

Do not exceed the maximum torque of 1.5 Nm when replacing the replaceable derailleur hanger.

Do not exceed the maximum torque of 4.5 Nm when tightening the bottle cage.

Do not exceed the maximum torque of 4.5 Nm when replacing the replaceable derailleur hanger.

Make sure the seat post matches accurately the frame.

Do not exceed the tightening torque of the bearing manufacturer.

Use Canyon carbon assembly paste to achieve a firm seat of the seat post.

Never grease a carbon seat post or the seat tube of a carbon frame.

Your seat post must be inserted into the seat tube beyond its minimum mark and its end must reach beyond the top tube. Never ride your Canyon with the minimum mark of the seat post being visible.

When replacing the derailleur hanger, make sure to apply a little grease between derailleur hanger and frame!
ADJUSTING THE CANYON BIKE TO THE RIDER

No matter whether you want to ride in streamlined position on a Canyon cross-country racer or relaxed on a Canyon Nerve All-Mountain bike. The (seating) position is crucial for your well-being and the development of your riding performance on your Canyon. Therefore, be sure to adjust both saddle and handlebars of your Canyon as accurately as possible to your needs.

In principle, a mountain bike is sports equipment. For this reason alone riding a mountain bike requires certain basic preconditions of the trunk, shoulder and neck muscles.

Your body height is the decisive criterion when choosing the frame size of your Canyon. By choosing a specific type of bike you already roughly determine the posture you will be riding in. However, some components of your Canyon are designed in a way that you can adjust them to your proportions up to a certain degree. These include the seat post, the stem and the brake levers.

Never ride a bike with a too high frame, resulting in a low crotch clearance when you stand over the bike. The Canyon Perfect Position System (PPS) offers you the possibility to select your Canyon perfectly tuned to your body without test ride. For more details on the PPS visit our website at www.canyon.com.

ADJUSTING THE SADDLE TO THE CORRECT HEIGHT

The correct saddle height for cross-country, marathon and tour riders is the height which gives maximum pedalling comfort and efficiency.

Attention: When pedalling, the ball of your big toe should be positioned above the centre of the pedal spindle. With your feet in this position you should not be able to stretch your legs completely at the lowest point. If the saddle is too high, you will have trouble passing through the lowest point and your pedalling will become awkward. If the saddle is too low, you may soon find your knees aching. You can check the height of your saddle in the following simple way. This is best done wearing flat-soled shoes.

» Sit on the saddle and put one heel on the pedal at its lowest point. In this position your leg should be fully stretched and your hips should not be tilted to either side.

To adjust the saddle height loosen the binder bolt or quick-release lever (read chapter “How to use quick-releases and thru axles” beforehand). Use a suitable tool to release the seat post binder bolt by turning it anticlockwise.

Do not pull the seat post out as far as to let the mark on the shaft come into view. In the case of frames with long seat tubes which continue beyond the top tube, the seat post should at least reach below the height of the top tube! This can mean a minimum insertion length of 10 centimetres (4.5 in.) or more.

With children who are still growing it is advisable to check the seating position every two to three months.

Never apply grease or oil into a seat tube of a frame made of carbon, unless an aluminium sleeve is inside the frame. If you mount a carbon seat post, do not put any grease on it, even if the frame is made of metal. Once greased carbon fibre components may never again ensure reliable clamping!
ADJUSTMENT TO THE RIDER SADDLE HEIGHT

Now you can adjust the saddle height to the desired position. Make sure the part of the seat post inside the seat tube is always well greased. (Except: frames and seat posts made of carbon). Do not use brute force, if the seat post does not move easily inside the seat tube. Contact, if necessary, our service hotline at +44 (0) 20 8501 2582.

Align the saddle with the frame using the saddle nose and the bottom bracket or top tube as references.

Clamp the seat post tight again by turning the seat post binder bolt clockwise. You should not need much strength in your hands to clamp the seat post sufficiently tight. Otherwise the seat post may be the wrong size for the frame. If you are in doubt, please call our service hotline at +44 (0) 20 8501 2582.

Verify that the seat clamp is sufficiently tight by taking hold of the saddle at both ends and trying to turn the seat post inside the seat tube. If it does not move, the seat post is firmly seated.

Does the leg stretch test now produce the right result? Check by moving your foot and pedal to the lowest point. If the ball of your big toe is exactly above the pedal centre (ideal pedalling position) your knee should be slightly bent. If this is the case, the saddle height is adjusted to the correct height.

Check whether you can balance safely on your bike while sitting on the saddle by stretching your feet to the floor. If not, you should lower the saddle a little.

For dirt biking, freeriding, downhill racing etc. the saddle is set to a very low height with a rearward tilt. Ask your trainer, a competent person in your club or contact our service hotline at +44 (0) 20 8501 2582 for the correct seating position or read up on this issue in chapter “Special features of freeride bikes”!

HANDLEBAR HEIGHT ADJUSTMENT TO THE RIDER

ADJUSTING THE HEIGHT OF THE HANDLEBARS

The height of the handlebars determines the inclination of the upper body. The deeper the handlebars, the more inclined the upper body. This means a more streamlined position for the rider and more weight to bear on the front wheel, but the extremely inclined position proves less comfortable, as the strain on wrists, arms, upper body and neck will increase.

AHEADSET®-STEMS OR THREADLESS SYSTEM
(Aheadset® is a registered trademark of the Dia-Compe company)

On bikes with an Aheadset®, the stem also serves to adjust the headset bearing pressure. If you change the position of the stem, you have to readjust the bearings (see chapter “The Headset”). The vertical setting range is determined by the intermediate rings, also referred to as spacers. With flip-flop stem models it is also possible to mount the stem the other way round to alter the handlebar height.

The stem is one of the load bearing parts of your bike and changes to it can impair your safety. Note that the bolted connections of the stem and the handlebars have to be tightened to specified torques. For the prescribed values, see chapter “Recommended tightening torques”. If you intend to make any changes, contact our service hotline at +44 (0) 20 8501 2582.

Also follow the component manufacturers’ operating instructions enclosed with the delivery.

In the case of height adjustable seat posts, such as the Reverb from RockShox, the height is adjusted by pressing a button on the handlebars. Read the operating instructions on the enclosed CD.
ADJUSTMENT TO THE RIDER HANDLEBAR HEIGHT

- Release the bolt at the top of the fork steerer tube which serves to adjust the initial bearing pressure and remove the Ahead cap.
- Release the stem clamping bolts on either side of the stem and pull the stem off the fork.
- Now you can remove the spacers.
- Apply a little Canyon carbon assembly paste in the stem clamping area.
- Remount the stem entirely on the fork steerer tube and slip the spacers you have removed above the stem.

Release the bolts on the side of the stem

Remove the spacers under the stem and place them above the stem

Verify that the handlebar clamping area is free of sharp edges. If you intend to make any changes, contact our service hotline at +44 (0) 20 8501 2582.

If you want to turn around the stem, you have to additionally remove the handlebars.
- To do so release the bolts of the stem front plate clamping the handlebars and remove them carefully.
- Apply a little Canyon carbon assembly paste in this clamping area and retighten the handlebars after having turned around the stem.
- Centre the handlebars accurately in the stem clamp.
- Retighten all bolts of the stem clamp with a torque wrench by observing the correct tightening torques. Please note that when using carbon assembly paste you normally need not use the maximum tightening torque. It will do already to tighten the bolts with tightening torques that are 20 to 25% below the maximum tightening torques, i.e. 6 Nm instead of 8 Nm. That will prevent the material from damage.
- Readjust the bearing.
- Realign the stem by making sure it is in alignment with the front wheel and at right angle relative to the handlebars and the direction of motion. After realignment of the stem retighten it and check whether the handlebars resist twisting and turning (see chapter “The headset”).

Stems come in very different lengths and shaft and binder tube diameters. A stem of inappropriate dimensions can become a source of danger: Handlebars and stem may break, causing an accident in the process. When replacing any parts be sure to only use parts that bear the appropriate mark and, to be on the safe side, original spare parts.

Make sure the handlebar clamping area is free of sharp edges. If you intend to make any changes, contact our service hotline at +44 (0) 20 8501 2582.

Note that the bolted connections of stem and handlebars have to be tightened to the specified tightening torques. You will find the prescribed values in chapter “Recommended tightening torques” or in the enclosed manuals of the component manufacturers. Contact, if necessary, our service hotline at +44 (0) 20 8501 2582. If you disregard the prescribed values, the handlebars or stem may come loose or break. This can lead to a severe crash.

Retighten the bolts

Readjust the bearing and retighten the stem

When removing the spacers you will have to shorten the steerer tube. This change is irreversible. For this reason, a shortening should not be carried out until you are absolutely sure about the seating position. Have this job carried out by an experienced mechanic. We recommend that you contact our Canyon workshop through our service hotline at +44 (0) 20 8501 2582.
FORE-TO-AFT POSITION AND SADDLE TILT

The inclination of your upper body, and hence your riding comfort and pedalling power, are partially influenced by the distance between the grips of the handlebars and the saddle as well as by the tilt of the saddle.

This distance can be altered slightly by changing the position of the saddle rails on the seat post. However, this also influences your pedalling. Depending on whether the saddle is positioned more to the front or more rearwards, your legs will reach the pedals to a greater or lesser extent from behind.

You need to have the saddle horizontal in order to pedal in a relaxed manner. If it is tilted, you will constantly have to lean against the handlebars to prevent yourself from slipping off the saddle.

Note that the bolted connections of the seat post have to be tightened to the specified tightening torques. Use a torque wrench and never exceed the maximum tightening torque! You will find the prescribed values in chapter “Recommended tightening torques”, directly on the components and/or in the manuals of the component manufacturers.

The setting range of the saddle is very small. Replacing the stem allows you to make far larger changes to the fore-to-aft position, because stems come in lengths differing by more than ten centimetres. In most of the cases the length of the cables must be adjusted. Be sure to have this job done by a specialist workshop. If you have any questions or in case you want to make an appointment, please call our service hotline at +44 (0) 20 8501 2582.

ADJUSTING SADDLE POSITION AND TILT

Patent clamping with two parallel bolts

With so called patent seat posts two bolts fix the clamping mechanism, which ensures the tilt and the vertical position of the saddle. Release both seat clamp bolts at the top of the seat post. Turn the bolts anticlockwise no more than two to three turns to begin with, otherwise the whole assembly can come apart.

Move the saddle forth or back, as desired. You may have to give it a light blow to move it. Observe the marking on the saddle rail and do not go beyond.

Make sure the seat of the saddle remains horizontal as you tighten the bolt evenly and alternately. The bike should stand on level ground while you adjust the saddle.

After fastening the saddle check whether it resists tilting by bringing your weight to bear on it once with your hands on the tip and once at the rear end.

SEAT POST MONORAIL

The saddle system Monorail from Selle Italia has a special seat post head for the saddle mounting. The saddle is not fitted with two saddle rails, as usual, but has a single carbon rail running underneath the centre of the saddle cover.

This makes for a larger horizontal adjustment range of the saddle.

After releasing both bolts at the seat post head you can move the saddle to the front and to the rear. These two bolts also allow the adjustment of the saddle tilt (e.g. lowering the front end of the saddle).

When you have found the perfect position, tighten the bolts to a maximum of 8 Nm.

Check the bolts by using a torque wrench once a month according to the values indicated in chapter „Recommended tightening torques“, in the enclosed manuals or directly on the components.
Clamping with two bolts in line

Release both bolts by two to three turns at the most, otherwise the whole assembly can come apart. Move the saddle forth or back to adjust the horizontal position. Tighten both bolts evenly so the saddle remains at the same angle.

If you wish to lower a little the nose of the saddle, turn the front bolt. It might be that you have to loosen the rear bolt a little. To lower the rear part of the saddle, the rear bolt has to be turned. Having found your preferred position make sure both clamps are correctly aligned with the saddle rails before tightening the bolts to the correct torque setting as prescribed by the seat post manufacturer.

Please observe the recommended tightening torques in chapter “General notes on care and inspection”. After fastening the saddle check whether it resists tilting by bringing your weight to bear on it once with your hands on the tip and once at the rear end.

Stems come in very different lengths and shaft and binder tube diameters. A stem of inappropriate dimensions can become a serious source of danger: Handlebars and stem may break, causing an accident in the process.

Bring the saddle rail in a position that the seat post clamping is within the marked area. If there is no marking, the clamping must be effected on the straight portion of the rail and on no account on the front or rear bend – risk of rupture!

When replacing the saddle, bear in mind that seat posts are normally designed for a saddle rail diameter of seven millimetres. Saddle rails of other dimensions may result in seat post failure, possibly throwing the rider off his bike.

To lower the rear part of the saddle, the rear bolt has to be turned. Having found your preferred position make sure both clamps are correctly aligned with the saddle rails before tightening the bolts to the correct torque setting as prescribed by the seat post manufacturer.

Please observe the recommended tightening torques in chapter “General notes on care and inspection”.

After fastening the saddle check whether it resists tilting by bringing your weight to bear on it once with your hands on the tip and once at the rear end.

HANDLEBARS AND BRAKE LEVER ADJUSTMENT

Bar ends on mountain bikes are usually fitted slightly angled. Adjust the handlebars so that you can rest your hands on it with your wrists relaxed and not turned outward too far.

Adjusting the Handlebar Position by Turning the Handlebar

- Release the Allen bolt(s) at the front side of the stem.
- Turn the handlebars to the desired position.
- Make sure the handlebars are accurately centred in the stem.
- Retighten the bolts carefully by using a torque wrench. Observe the prescribed tightening torque (see chapter “General notes on care and inspection”). After adjusting the handlebars you have to readjust the brake and shift levers, as well.
- Release the Allen bolt at either grip binder.
- Turn the brake and shift lever on the handlebars. Sit on the saddle and place your fingers on the brake levers. Check whether the back of your hand forms a straight line with your lower arm.
- Retighten the levers.
- Check the firm seat of the handlebar by standing in front of your Canyon and seizing the handlebars at both brake levers. The handlebars must be tight and withstand any jerk. Gently retighten the clamping bolt(s), if necessary.

Tighten the brake and shift levers to the prescribed torques.
Bar ends give you additional ways of gripping the handlebar. They are usually fixed in a position that gives the rider a comfortable grip when pedalling out of the saddle, i.e. almost parallel to the ground or tilted upwards at an angle of about 25 degrees.

- Release the bolts, which are usually located on the under or upper side of the bar ends, by one to two complete turns.
- Turn the bar ends to the desired position and make sure the angle is the same on both sides.
- Retighten the bolts to the required torque.
- Check the firm seat of the bar ends by trying to twist them out of position.
- Carbon handlebars with bar ends require special end caps for sealing the handlebar ends. If you have carbon handlebars, be sure to read the manual, as the usage of bar ends is only allowed to a limited extent by some handlebar manufacturers.

Never fix bar ends in a vertical position or with their ends pointing towards the rear as this would increase the risk of injury in the event of an accident.

Note that the bolted connections of stem, handlebars, bar ends and brakes have to be tightened to their specified torques. You will find the prescribed values in chapter “General notes on care and inspection” or in the enclosed manuals of the component manufacturers. If you disregard the prescribed values, the components may come loose or break. This can lead to a severe crash.

With many brake systems the distance between the brake levers and the handlebar grips is adjustable. This gives riders with small hands the convenience of being able to bring the brake levers closer to the handlebar. The length of the rider’s fingers also determines how the lever position for first brake contact should be set.

- Check the point, when the brake pads touch the braking surfaces. If this point is reached after the lever has only travelled a short distance, you have to readjust the brakes. For more information on the adjustment of the brake lever reach, see chapter “The brake system”. Otherwise the brake might drag after the adjustment. If this point is, however, reached after the lever has travelled half of its way, there is a little play to reduce the gripping distance of the levers.
- On most bikes there is a small (headless) bolt near the point where the brake cable or brake line enters the brake lever mount. Screw in the bolt and watch how the lever moves as you do so.
- Hydraulic brakes are normally equipped with an adjusting bolt at the lever, by means of which the position can be altered.
- When you have set the levers to the desired gripping distance, be sure to check whether there is still enough slack for the brake levers to move a little before the brake pads hit the brake surfaces.

Note that the distance you need to stop your bicycle increases, while riding with your hands on bar ends. The brake levers are not in all positions within easy reach.

You should not be able to pull the brake levers all the way to the handlebars. Your maximum brake force must be reached short of this point!

Also follow the additional brake manufacturer’s operating instructions.
THE PEDAL SYSTEMS

Not all shoes are suited for cycling. Shoes used for cycling should have a stiff sole and provide a firm support for your feet. If the soles are too soft, the pedals can press through and cause foot pain. The sole should be not too broad near the heels, as the rear stays will otherwise get in the way of your pedalling. This will prevent your feet from assuming a natural position and may cause knee pain in the long run.

DIFFERENT SYSTEMS AT A GLANCE - HOW THEY WORK

Pedals to be recommended are pedals which provide a lock and release mechanism for your shoe, known as clipless or step-in pedals. The firm connection between shoe and pedal prevents your feet from slipping off when pedalling fast or when riding over rough ground. Besides this, it enables you not only to push but also to pull the pedals, which makes your pedalling more fluent. A further advantage is that the ball of your big toe comes to rest just at the right place on the pedal spindle and that you do not block inadvertently the front wheel with the tips of your feet during steering.

Clipless of step-in pedals come with a special type of cycling shoe which locks onto the pedal similarly to a ski binding. To engage with the pedal is to turn it to the horizontal using the tip of the cleat (the plate on the sole of the shoe) and then rest your foot on it. Most mountain bikes are equipped with a double-sided lock-in mechanism, so that you can step on the pedal with either face up. The shoe engages with the pedal with a click which you will hear and feel clearly.

With all commercially available systems the shoe is disengaged from the pedal by twisting the heel outward. Lean against a wall or ask someone to hold you when you try to engage and disengage the shoe from the pedal.

Functional differences between the pedal systems concern the shape of the cleat, the release angle and the rigidity of the connection. Cyclists predisposed to knee trouble should choose a pedal system that has some “float”, so that the heel can move sideways a little while the shoe is engaged with the pedal.

Some clipless pedals have cleats embedded into the sole which is a great advantage, as it ensures stable walking.
ADJUSTMENT AND MAINTENANCE

Current pedal systems can show considerable differences in design. Nevertheless, there are some general rules for adjustment which apply to all of them:

- The cleat has to be fastened to the shoe in such a position that the ball of the foot comes to rest on the pedal spindle.
- Your feet should assume a natural position when pedalling. For most people this means that the heels will point inward a little.
- Make sure the fastening bolts are properly tightened, as you will find it almost impossible to disengage your shoe from a loose plate! Risk of an accident!
- Adjust the required releasing force according to your needs. It is advisable to adopt a low releasing force setting to begin with. Turn the small Allen bolt and examine the change in releasing force when you engage and disengage the shoe from the pedal.
- Exposed springs and other components that attract dirt have to be cleaned and regreased regularly.
- Squeaking or creaking cleats can often be silenced by applying a little grease to the point of contact between cleat and pedal.
- Regularly check the cleats for wear. If your shoe wobbles on the pedal, the cleat or the sole of your shoes might be worn.

THE BRAKE SYSTEM

In general the brakes of your Canyon are necessary to adjust your speed to the traffic situation. However, in an emergency the brakes must be able to bring your Canyon to a halt as quickly as possible. Such emergency stops are also a study in physics. In the process of braking, the rider’s weight shifts forward, thus reducing the load on the rear wheel. The rate of deceleration on a dry and grippy ground is primarily limited by the danger of overturning and only in the second place by the road grip of the tyres. This problem becomes particularly acute when riding downhill. In the event of an emergency stop you have to try to put your weight back as far as possible.

Actuate both brakes simultaneously and bear in mind that, due to the weight transfer, the front brakes can generate a far better braking effect on a surface with good grip.

The assignment of brake lever to brake pad, e.g. left lever acts on front brake, can vary. Have the brakes changed, as you want them, before your first ride.

With disc brakes too, prolonged braking or permanent dragging of brake pads can overheat the brake system. This can result in a loss of braking power, even to the point of total brake failure, provoking serious accidents.

Therefore, check your riding manners and make it a habit to brake hard and then to open the brake again, whenever the road surface and the situation allows it. It is better to stop for a moment and let the rotor or rim cool down rather than to risk anything.
BRAKES – HOW THEY WORK AND WHAT TO DO ABOUT WEAR

Actuating the hand lever on the handlebar causes a stationary brake pad to be pressed against a rotating braking surface, and the resulting friction slows down the wheel. The rate of deceleration is not only determined by the force with which the brake pad is pressed against the braking surface, but also to a decisive degree by the coefficient of friction, which depends on the two materials that are rubbed against each other.

When water, dirt or oil gets in contact with one of the engaging surfaces, this changes the coefficient of friction. This is why disc brakes respond at a slight delay and less powerfully in wet weather. The friction generated by braking causes wear to the brake pads as well as to the rotors! Frequent rides in the rain hasten wear on both engaging surfaces.

CHECKING AND READJUSTING DISC BRAKES

In the wet disc brakes respond much faster than rim brakes. They also require fairly little maintenance and do not wear down the rims as rim brakes do. One drawback of disc brakes is that they tend to be noisy when they are wet. With disc brakes the brake levers can be adjusted to the size of your hands, too, allowing you to operate them with optimal effectiveness. In most cases this is done by means of a small Allen bolt located directly at the hand lever.

FUNCTIONAL CHECK

Regularly check the lines and connections for leaks while pulling on the lever. If hydraulic oil or brake fluid leaks out, you should take appropriate measures immediately, as a leak can render your brakes ineffective. Contact, if necessary, our service hotline at +44 (0) 20 8501 2582.

Check the pads for wear by inspecting the thickness of the braking material attached to the backing plate within the brake caliper or view through the window on the upper side of the caliper. If there is approximately 1mm of material left on each brake pad, remove the pads according to the manufacturer’s operating instructions, check them thoroughly and replace them, if necessary.

- Make sure that the rotors and brake pads remain absolutely free of grease, lubricant and wax. Brake pads, once contaminated with oil cannot be cleaned, but have to be replaced!
- Wet conditions and/or a heavily clogged brake can lead to squeaking noises during braking.
- When replacing brake pads, be sure to only use marked original spare parts matching your brake.
- Leakages in the lines of hydraulic brakes may render them ineffective. Remove such leakages immediately, otherwise risk of accident!
- Manufacturers of disc brakes deliver their products with detailed operating instructions. Be sure to read these operating instructions carefully before you dismount a wheel or do any maintenance work.
- When replacing any parts be sure to only use original spare parts!
- Dirty brake pads and rotors can lead to drastically reduced braking power. Therefore, make sure the brake remains free of oil and other fluids, especially when you clean your bicycle or grease the chain. Dirty brake pads can under no circumstances be cleaned, they must be replaced! Rotors can be cleaned with warm water and mild soap. There are also special brake cleaners available.
AVID, FORMULA, MAGURA AND SHIMANO BRAKES

These brake models are equipped with a mechanism which automatically compensates for the wear. Before every ride, check whether you get a clear-cut braking response before the lever touches the handlebars. Check at regular intervals, whether the brake pads are still sufficiently thick.

The brake models of some manufacturers include transport locks with cut-outs. The brake pads of these brakes must be replaced as soon as they fit into these cut-outs.

Only use original replacement pads and follow the operating instructions of the brake manufacturers. If you have the slightest doubt, leave this job to a skilled mechanic.

THE GEARS

The gears on your Canyon serve to adjust your pedalling power to the slope of the road, wind conditions, and the desired speed. The gears do not reduce the physical work to be performed which remains the same with the identical distance to be performed at identical speed, but the pedalling force per crank rotation. In other words: A low gear allows you to climb steep hills with moderate pedalling force. You have to pedal, however, relatively fast.

Downhill you switch to a high gear. Every turn of the pedals takes you many metres forward at correspondingly high speed. To ride economically you frequently have to switch gears. As with a motor vehicle, your “engine” wants to be kept within a certain speed range, if it is to give its best performance.

On level ground your pedalling speed, also referred to as cadence, should be higher than 60 strokes a minute. Racing cyclists pedal at a rate between 90 and 110 strokes a minute on level ground. When climbing uphill, your cadence will naturally fall off somewhat. Your pedalling should always remain fluent however. Finely graduated adjustments as well as an easy operability of modern bike gears are the best preconditions for an efficient riding. In addition, it reduces chain and sprocket wear as well as the strain on your knee joints.
Derailleur gears are the most effective type of transmission on bikes. About 97 to 98 percent of the pedalling force performed is transmitted to the rear wheel with well-maintained and greased derailleur gears. The control of the gear system as well as the braking performance leave nothing to be desired.

With specially designed sprocket teeth, flexible chains and clearcut lever positions, shifting gears has become very easy. Most systems have an indicator on the handlebars showing the currently used gear.

THE GEARS - HOW THEY WORK AND HOW TO USE THEM

Shifters in form of gear levers work in two different ways. With most of them pressing the large shifter moves the chain to the larger chainrings. The small shifter located in front of the handlebars, from the rider’s viewpoint, moves the chain towards the smaller chainrings. This means that any gear shift made by pushing the large thumb shifter on the right produces a lower gear, while pressing the large thumb shifter on the left moves the chain to the larger chainwheel, thus producing a higher gear.

Shimano gear shifters are operated with thumb and index finger, while SRAM gear shifters are exclusively thumb-operated, i.e. in this case the bigger shifter shifts to a bigger chainring, as well.

The principle of twist grips is different. Twisting the right-hand grip towards you moves the chain to a larger sprocket giving you a lower gear, while the same movement on the left produces a higher gear by moving the chain to the larger chainrings. The shifting direction may vary in this case, as well.

The shifting of a gear lever is communicated to the rear derailleur via bowden cable. Then the rear derailleur swivels, causing the chain to climb onto the next sprocket. It is therefore important when changing gears to continue pedalling smoothly without force as long as the chain is moving between sprockets or chainwheels! There are, however, special guides in the chainrings which allow for changing gears under force.

Keep on pedalling without force while you shift. This will lead to a smooth and quiet gear change and reduce the wear.

Practise changing gears in a place free of traffic until you are familiar with the functioning of the different levers or twist grips. If you do so in road traffic, your attention might be drawn off from possible risks.
Changing gears under load shortens, however, the service life of your chain considerably. Therefore, avoid changing gears while pedalling with force, in particular when changing gears with the front derailleur.

The front derailleurs of Canyon mountain bikes are usually equipped with a very small chaining. They have 24 or 27 gears. Some gears with particular chain run should be avoided. Gears with an extremely oblique run of the chain enhance a higher inner friction, which reduces the power transmission efficiency and hastens wear of the chain.

An unfavorable run of the chain is when the smallest chainring (front derailleur) is used with one of the two or three outermost (smallest) sprockets (rear derailleur) or when the largest chaining is used with one of the inmost (largest) sprockets.

Avoid gears which involve an extremely oblique run of the chain.

Adjusting the front and rear derailleur accurately is a job for an experienced mechanic.

If you want to try adjusting it yourself, be sure to read the operating instructions of the manufacturer. In case you face any problem with the gears, please contact our service hotline at +44 (0) 20 8501 2582.

Do not shift under load, as this will shorten the durability of the chain considerably. Furthermore, this can lead to a chain-suck, i.e. the chain can get jammed between chainstay and chainrings. Avoid shifting gears while pedalling with force, in particular when shifting with the front derailleur.

Checking and readjusting the gears

The derailleur gears were thoroughly adjusted by the Canyon team before delivery of your Canyon. The bowden cables may, however, give way on the first kilometres making gear changing imprecise. This will result in the chain not wanting to climb onto the next larger sprocket.

Rear derailleur

• Increase the tension of the bowden cable by turning the adjusting bolt through which it passes at the entry to the shift lever or rear derailleur.
• After tensioning the bowden cable check whether the chain readily climbs onto the next larger sprocket. To do this you either have to turn by hand the cranks or ride your Canyon.
• If the chain readily climbs onto the next larger sprocket, check whether it also readily shifts to the small sprockets when you change to a higher gear. You may need several tries to get the derailleur system properly adjusted.

Adjustment of limit stops

The rear derailleur is equipped with limit screws which limit the swivel range of the rear derailleur, thus preventing the rear derailleur and chain from colliding with the spokes or the chain from dropping off the smallest sprocket. The limit screws do not change their position during normal use:

If your Canyon topples over, the rear derailleur or its attachment might get bent. You should therefore check the swivel range after any incident or when mounting other wheels onto your Canyon.

• Shift the gear lever to the highest gear (smallest sprocket). The inner cable is then totally relaxed and the chain will automatically run on the smallest sprocket. Look from the rear at the rear gear cluster and check, whether the pulleys are perfectly aligned with the teeth of this sprocket.

Ask a helper to lift the rear wheel. By turning the cranks and shifting through you can easily check the function.
GEARS CHECK AND READJUSTMENT

- If this is not the case, you have to adjust the position by means of the limit screw. The limit screws on rear derailleurs are often marked “H” for high gear and “L” for low gear. In this case high gear stands for high transmission ratio, i.e. with the chain running on the smallest sprocket.
- If the screws are not marked, you will have to find out by trial and error. Turn one of the screws counting the number of turns and watch the rear derailleur. If it does not move, turn the screw back to its original position.
- Turn the screw clockwise to shift the rear derailleur towards the wheel and anticlockwise to shift it away from the wheel.
- Change gears to the biggest sprocket. Be careful as you do so, as not to let the rear derailleur collide with the spokes. When the chain runs on the biggest sprocket, see whether you can take the rear derailleur even further by moving the shift lever to the end of its travel. Then press the rear derailleur further towards the spokes by hand. Spin the wheel.
- If the pulley cage touches the spokes or if the chain begins to move beyond the largest sprocket, you should reduce the swivel range. Turn the screw marked “L”, until you are absolutely sure the rear derailleur does not collide with the spokes.
- Check the position of the pulley cage towards the sprocket. The gap between pulley and the largest sprocket should leave a clearance of one to two links at least.
- The rear derailleur is equipped with a bolt located at the drop-out front which serves the purpose of adjusting this clearance. Screw in this bolt until the clearance is as desired. Turn the cranks backwards for checking purposes. The pulley should not touch the sprocket during this movement, as well.

- In case the clearance still does not suffice, changing gears being thus impeded, you have to shorten the chain by one link. This means an increased tension on the rear derailleur. It must, however, be ensured that the chain can run on the largest chainring as well as on the largest sprocket. Due to the extremely oblique run of the chain, this gear should however be avoided.

FRONT DERAILLEUR

Adjusting the front derailleur requires a great deal of experience. The range within which the front derailleur keeps the chain on the chainring without itself touching the chain is very small. It is often better to let the chain drag slightly on the derailleur than to risk having the chain fall off the chainwheel, which would interrupt the power train of your Canyon.

As with the rear derailleur, the cable of the front derailleur is subject to lengthening and hence to reduced precision in gear changing.

- Increase the tension of the gear cable by turning the adjusting bolt through which it passes at the entry to the shift lever. This works mainly, as described in section „Checking and readjusting the gears“.
- Reduce the swivel range of the front derailleur with the limit screws.

CHECK AND READJUSTMENT GEARS

Increase the tension of the bowden cable by turning the adjusting bolt.

Be sure to go on a test ride in a place free of traffic, after adjusting the gears of your bicycle. Improperly adjusted limit stops or a bent rear derailleur mount can result in a severe damage to the bicycle and a rear wheel blocking. Risk of an accident!

Always check after an accident whether the guide plates of the front derailleur are still parallel to the chainrings!

The initial adjustment of the front and rear derailleur is a job for an experienced mechanic. Maldadjustments may cause severe mechanical damage. For more information be sure to read the operating instructions of the gear manufacturer. In case you face any problem with the gears, please contact our service hotline at +44 (0) 20 8501 2582.

Adjusting the front derailleur is a delicate job. Improper adjustment can cause the chain to jump off, thus interrupting the power train. Risk of an accident! Adjusting the front derailleur is a job for professionals.

After having adjusted the gears and the chain it is essential to take your Canyon for a test ride in a level, unfrequented area (e.g. in a parking lot)! If the adjustments turn out to be improper when riding in road traffic, you may lose control over your Canyon.
CRANK GEAR

The SRAM Hammerschmidt allows two different gear ratios.

Shifting is performed with a trigger shifter on the left side. Pressing the big thumb shifter makes for a lower gear ratio.

CHAIN MAINTENANCE

It still holds true that proper lubrication makes for enjoyable riding. What counts is, however, not the quantity, but the distribution and regular application of lubricant.

- Clean your chain from dirt and lubricant with an oily rag from time to time. There is no need to use special degreasers.
- Having cleaned the chain as thoroughly as possible, apply chain oil, wax or grease to the chain links.
- To lubricate the chain, drip the lubricant onto the rollers while you turn the crank.
- This done, pedal through several chain lengths and then let the chain rest for a few minutes so that the lubricant can disperse.
- Finally rub off excess lubricant with a rag so that it does not spatter around or attract dirt during riding.

CHAIN WEAR

Although the chain is one of the wearing components of your Canyon, there are still ways of influencing its service life. Make sure the chain is lubricated regularly, especially after riding in the rain. Try to only use gears which allow a more or less straight run of the chain. Get in the habit of pedalling at a high cadence (more than 60 to 70 strokes/minute).

With mountain bikes, chains running on derailleur gears are often worn out as early as after about 800 km (500 miles). Heavily stretched chains impair the operation of derailleur gears. Cycling with a worn-out chain also accelerates the wear of the sprockets and chainrings. Replacing these components is relatively expensive compared with the costs of a new chain. It is therefore advisable to check the condition of the chain at regular intervals.

For this purpose run the chain on the large chainring. Take the chain between your thumb and index finger and try to lift it off the teeth. If you can lift it off clearly, it is seriously lengthened and in need of replacement.

There are accurate measuring instruments for precise chain inspection. Replacing the chain should be left to an expert, as most of the modern chains are not equipped with a master link. Instead they have a continuous design and require special-purpose tools for mounting. If you need help, ask a dealer to select and mount a chain appropriate to your gear system.

⚠️ For the sake of the environment, only use biodegradable lubricants. Bear in mind that some of the lubricant will always end up on the ground, especially in wet conditions.

⚠️ Make sure the rotors and the brake pads remain clear of lubricants, as the brakes will fail otherwise!

⚠️ An improperly riveted chain can break, possibly throwing you off your bike. Let your chain be replaced by an experienced mechanic.
THE WHEELS - TYRES, INNER TUBES AND AIR PRESSURE

The wheels of your Canyon create the contact to the road or track you are riding on. They are subject to considerable stress through the weight of rider and baggage as well as through bumpy road surfaces or ground. Although wheels are manufactured with great care and delivered accurately trued, this does not prevent the spokes and nipples from losing a little tension on the first kilometres. For this reason it may be that the wheels must be trued up as early as after you have run them in over about 100 to 300 kilometres (60 to 180 miles). Check the wheels regularly after you have run them in. It will rarely be necessary to tighten the spokes.

The wheel consists of hub, spokes and rim. The tyre is mounted onto the rim so that it encases the inner tube. There is a rim tape running around the base of the rim to protect the sensitive inner tube against the spoke nipples and the edges of the rim base, which are often sharp.

If you want to replace a tyre, you need to consider the actual size of the old tyre. It is marked on the side of the tyre. There are two designations, the more precise of which uses millimetres. The number sequence 57-559 means that the tyre is 57 mm wide when fully inflated and that it has an inner diameter of 559 millimetres. The other designation for this tyre reads 26x2.25 which refers to inches. By choosing a bigger tyre you risk that the tyre drags along the fork or the rear frame. Therefore, please mount a tyre of identical dimension.

Tyres have to be inflated to the correct air pressure in order to work properly. Adequately inflated tyres are also more resistant to flats. An insufficiently inflated inner tube can easily get pinched ("snake-bitten"), when it goes over a sharp kerb.

The air pressure recommended by the manufacturer is given on the side of the tyre or on the type label. The lower of the two pressure specifications makes for better cushioning and is therefore best for off-road cycling. Rolling resistance decreases with increasing pressure, but so does comfort. A high tyre pressure is therefore most suitable for riding on tarred roads and smooth paths.

Inflation pressure is often given in the old system of units, i.e. in psi (pounds per square inch). The table gives the most common pressure values in terms of three systems.

The tyre and rim alone are not able to hold the air. Except: Tubeless tyres with mountain bikes. Therefore, an inner tube has to be placed inside the tyre to retain the air pressure. The tube is pumped up via a valve. Canyon bikes are equipped with Sclaverand or race valves, which are meanwhile used on nearly all types of bikes. This valve is provided with a plastic cap to protect it from dirt.

<table>
<thead>
<tr>
<th>psi</th>
<th>bar</th>
<th>kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2.1</td>
<td>210</td>
</tr>
<tr>
<td>40</td>
<td>2.8</td>
<td>280</td>
</tr>
<tr>
<td>50</td>
<td>3.5</td>
<td>350</td>
</tr>
<tr>
<td>60</td>
<td>4.1</td>
<td>410</td>
</tr>
<tr>
<td>70</td>
<td>4.8</td>
<td>480</td>
</tr>
<tr>
<td>80</td>
<td>5.5</td>
<td>550</td>
</tr>
<tr>
<td>90</td>
<td>6.2</td>
<td>620</td>
</tr>
</tbody>
</table>

Air pressure in psi, bar and kPa

If you mount a new tyre with another size than the standard tyre mounted, it might be possible that the clearance between the front of your shoe and the wheel will be reduced when you ride at reduced speed. During compression of the suspension system a wheel can get jammed, as well. Risk of an accident!

Riding with too low air pressure may make the tyre come off the rim.

Tyres allowing an inflation pressure of five bars or more have to be mounted on hook bead rims, identifiable by the designation "C".

Never inflate your tyres beyond the maximum permissible pressure, otherwise one of them might burst or come off the rim during the ride. Risk of an accident!

If you mount a tyre which is wider than the standard tyre mounted, the tyre may drag along the fork crown with a completely compressed suspension fork.
Please note that the valves have different diameters. Only use inner tubes with valves matching the rim. Using a wrong valve may cause a sudden loss of air pressure and hence throw you off your bike.

With this valve type it may happen that the valve body is not screwed in properly and that air leaks out slowly. Check the seat of the valve body in its stem.

Hand pumps are often unsuitable for inflating tyres to high pressure. A better choice is a stand pump equipped with a manometer which enables you to check the pressure at home. There are adapters for all types of valves which allow you to inflate any type of inner tube at the filling station.

With race or Sclaverand valves the valve must be unscrewed.

Valve adapter

Replace tyres with a worn tread or brittle or frayed sides. Dampness and dirt penetrating the tyre can cause damage to its inner structure.

Replace spoilt rim tapes immediately. Except: With Mavic system wheels you do not need rim tapes.

In the extreme case damage to the tyre may make the inner tube suddenly burst, throwing you off your bike!

With Sclaverand valves you first have to undo the small knurled nut a little and press it in carefully until air starts to escape.

RIM TRUENESS, SPOKE TENSION

The spokes connect the rim to the hub in the middle of the wheel. An even spoke tension makes for the true running of the wheel. If the tension of individual spokes changes, e.g. as a result of riding too fast over a kerb or due to spoke breakage, the tensile forces acting on the rim become unbalanced and the wheel will no longer run true. The functioning of your Canyon may even be impaired before you notice the untrue wheel by its wobbling.

Check the wheel trueness

Loose spokes must be tightened at once. Otherwise the load on the other spokes and the rim will increase.

Truing (retruing) wheels is a difficult job which you should definitely leave to an expert.

Do not ride with untrue wheels. Risk of an accident! It is therefore advisable to check the wheels for trueness from time to time. For this purpose lift the wheel from the ground and spin it with your hand.

Truing stand

Always ride your bicycle with the prescribed tyre pressure and check the pressure at regular intervals, at least once a week.

Make sure the valve diameter matches the hole in the rim and the valve is always in upright position!
WHEEL FASTENING WITH QUICK-RELEASES

The wheels are attached to the frame at the hub axles. Each axle is clamped tight in the drop-outs by means of a quick-release.

Quick-releases require no tools at all. Just release the lever, unscrew it a few turns, if necessary, and take out the wheel (see chapter "How to use quick-releases and thru axles").

However, a thief will find this just as easy to do! As an anti-theft measure you can replace the quick-releases by special locks. They can only be opened and closed with a special, coded key or an Allen key.

WHEEL FASTENING WITH THRU AXLE SYSTEMS

There is a wide range of thru axle systems available now. Some systems are tightened with quick-releases. Other systems may require special tools for assembly or disassembly.

Check the fastening after one to two hours in use and then every 20 hours of use.

> Always observe the enclosed operating instructions of the fork manufacturer.
> Never ride a bicycle without having first checked whether the wheels are securely fastened! A wheel that comes loose whilst riding will throw you off your bicycle!
> Canyon mountain bikes are also fitted with thru axle systems. For more information read chapter "How to use quick-releases and thru axles".

REPAIRING PUNCTURES

Tyre punctures can happen to any cyclist. As long as you have the necessary tools for changing tyres and tubes and a spare tube or a tyre repair kit, this need not mean the end of your cycle tour, however. For bikes with quick-releases all you need for changing tubes are two tyre levers and a pump; if your wheels are secured with nuts or anti-theft lock you also need a suitable wrench for removing the wheel.

WHEEL REMOVAL

- If your Canyon has V-brakes you first have to disengage the brake cable from the brake arm. To do this grip around the wheel with one hand and press the brake pads and arms together. In this position it should be easy to disengage the usually barrel-shaped nipple or, in the case of V-brakes, the outer cable.
- With hydraulic disc brakes make sure not to actuate the brake lever with the wheel belonging to that brake being dismounted. When remounting the wheel, check that the rotor does not drag along the brake caliper. Avoid touching the rotors immediately after braking, as they get very hot and you might hurt yourself.
- If you have derailleur gears, you should shift the chain to the smallest sprocket before removing the rear wheel. This shifts the rear derailleur right to the outside where it does not interfere with the removal of the wheel.
- Open the quick-release, as described in chapter "How to use quick-releases and thru axles". If you cannot remove the wheel after releasing the lever or nut, it is probably still being held in place by drop-out catches. They come as projections which jut into the drop-outs. In these cases, just release the quick-release adjusting nut by a few turns and slip the wheel past the catch.

> Do not pull the (disc) brake lever with a removed wheel and make sure to mount the safety locks when removing the wheel!
> Rotors can become hot, so let them cool down before removing a wheel.
> Please read the operating instructions of the brake and the gear manufacturer, enclosed with the BikeGuard.
You will find it easier to remove the rear wheel, if you pull the rear derailleur rearwards a little.

Lift your Canyon a little off the ground and give the wheel a light blow with your hand so that it drops out.

REMOVING CLINCHER AND FOLDING TYRES

- Screw the valve cap and the fastening nut off the valve and deflate the tyre completely.
- Press the tyre from the rim side towards the centre of the rim. You will find it easier to remove the tyre, if you do this around its entire circumference.
- Apply the plastic tyre lever to one bead of the tyre about 5 cm left or right from the valve and lever the tyre out of the rim. Hold the tyre lever tight in its position.
- Slip the second tyre lever between rim and tyre at a point about ten centimeters beyond the first one and lever the next portion of the bead over the edge of the rim.
- After levering a part of the tyre bead over the edge of the rim you should normally be able to slip off the whole tyre on one side by moving the tyre lever around the whole circumference.
- Now you can pull out the inner tube. Take care the valve does not get caught, as this can damage the inner tube.

Apply the plastic tyre lever to one bead of the tyre about 5 cm left or right from the valve and lever the tyre out of the rim. Hold the tyre lever tight in its position.

Slip the second tyre lever between rim and tyre at a point about ten centimeters beyond the first one and lever the next portion of the bead over the edge of the rim.

After levering a part of the tyre bead over the edge of the rim you should normally be able to slip off the whole tyre on one side by moving the tyre lever around the whole circumference.

Now you can pull out the inner tube. Take care the valve does not get caught, as this can damage the inner tube.

- Repair the puncture according to the operating instructions of the repair kit manufacturer.
- After having removed the tyre, you should check the rim tape. The tape should lie squarely in the base of the rim covering all spoke ends and should neither be torn nor brittle. In the case of rims with double base – known as double chamber rims – the tape must cover the entire rim base. For this type of rim only use rim tapes made of fabric or durable plastic. In case you are not sure with regard to your rim tape, please contact our service hotline at +44 (0) 20 8501 2582.
- If necessary, you can remove the whole tyre by pulling the other tyre bead off the rim.

MOUNTING CLINCHER AND FOLDING TYRES

When mounting a tyre make sure no foreign matter such as dirt or sand gets inside the tyre and you do not damage the inner tube.

- Slip one bead of the tyre onto the rim. Using your thumbs, press the bead over the edge of the rim over the entire circumference. You should be able to do this without any tools, regardless of the type of tyre. Stick the valve of the tube through the hole in the rim.
- Inflate the inner tube slightly so that it becomes round and push it into the tyre all the way round. Make sure not to leave any folds in the tube.
- To finish mounting the tyre start at the point opposite the valve. Using your thumbs, press the second bead of the tyre over the edge of the rim as far as you can.
- Make sure the inner tube does not get pinched and squashed between tyre and rim. This is prevented by pushing the inner tube into the tyre hollow with a finger as you work along.

If the fabric of the tyre is destroyed by the perforating object, replace the tyre as a precaution.

Replace spoilt rim tapes immediately.
• Work the tyre into the rim by approaching the valve symmetrically from both sides. Towards the end you will have to pull the tyre vigorously downwards to make the already mounted portion of the tyre slip towards the deepest part of the rim base. This will ease the job noticeably on the last centimetres.
• Check again the proper seat of the inner tube inside the tyre and press the last stretch of tyre over the edge of the rim by using the balls of your thumb.
• If this does not work, you will have to use tyre levers. Make sure the blunt ends point towards the inner tube and the inner tube does not get damaged.
• Press the valve deep into the tyre so that the inner tube does not get caught between rim and tyre beads. Does the valve stand upright? If not, dismount one bead again and reposition the inner tube.
• To make sure the inner tube does not get pinched between rim and bead, inflate the tyre a little and then move it sideways back and forth between the sides of the rim. While doing this you can also check whether the rim tape has been displaced.
• Inflate the inner tube only to the desired pressure. The maximum pressure is indicated on the side of the tyre.
• Check the proper seat of the tyre by means of the "witness line" on the side of the tyre just above the edge of the rim. Make sure the witness line is even with the rim edge all the way around the tyre.

If you have a puncture en route, you can try to repair the tube without dismounting the wheel and without removing the entire inner tube. Leave the valve sticking in the rim and first look for the hole where the air escapes. Pump up the inner tube. Bring the inner tube close to your ear and watch out for hissing noises. When you have found the hole, look for the corresponding place on the tyre and examine it. Often you will find the foreign body sticking in the tyre. Remove it, if necessary.

Improper mounting may cause malfunction or even brake failure. It is therefore absolutely necessary to follow the manufacturer’s operating instructions enclosed with the delivery.

REMOVING TUBELESS/UST TYRES
Deflate the tyre completely. Use your hands to press the tyre from the sides towards the centre of the rim, until both beads lie slack in the centre of the rim. Start dismounting the tyre at the point opposite the valve and lift one tyre bead with your fingers over the edge of the rim. Slip the entire tyre bead over the rim. Then pull the other bead off the rim, as well.

REPAIRING TUBELESS/UST TYRES
In the event of a puncture tubeless tyres also work with an inserted inner tube. First remove the perforating object from the tyre. Dismount the valve from the rim, as well. Insert a slightly inflated inner MTB tube into the tyre. Mount the tyre as described above and make sure it is properly seated in the rim and inflated to the specified pressure. Tubeless tyres can be sealed on the inside with a conventional repair patch. Follow the operating instructions of the repair kit manufacturer.
MOUNTING TUBELESS/UST TYRES

Before mounting a tyre make sure it is free of dirt and lubricant on the inside and around the beads. Wet both beads all around with soapy water or with tyre fitting lubricant before mounting. Do not use tyre levers!

Press the tyre onto the rim with your hands only to avoid damage to the beads. Press one bead over its entire circumference over one edge of the rim. Centre the tyre in the rim. Make sure the tyre is properly seated in the rim base and the beads lie symmetrically on either side of the valve. Inflate the tyre to its maximum air pressure. The pressure is usually specified on the side of the tyre.

In doing so the tyre engages with the rim. Check whether the tyre is properly seated by inspecting the fine witness line all around the tyre just above the side of the rim. This witness line should be even to the rim all around the tyre. Finish by adjusting the air pressure through the valve from the maximum pressure range.

MOUNTING WHEELS

Mounting the wheel is done in the reverse of dismounting. Make sure the wheel is correctly seated in the drop-outs and accurately centred between the fork legs or the rear and chainstays. Check the proper seat of the quick-release (see chapter “How to use quick-releases and thru axles”) and connect, if necessary, the brake cable immediately!

Before you set off again, make sure the disc brake is not dragging. Make sure the wheel is correctly and firmly fixed in the drop-outs. After mounting the wheel make sure the rotor is free of grease or other lubricants. Be sure to do a brake test!

Tubeless tyres must be mounted on UST rims or UST wheels (Mavic and other manufacturers) only.

Improper mounting may cause malfunction or even brake failure. It is therefore absolutely necessary to follow the manufacturer’s operating instructions enclosed with the delivery.

If the fabric of the tyre is, however, destroyed by the perforating object, replace the tyre as a precaution.
THE HEADSET

The headset connects fork, stem, handlebars and front wheel to the frame, but allows them to turn freely as a unit. It must afford virtually no resistance to turning, if your Canyon is to go straight, stabilizing itself as it runs. Shocks caused by uneven road surfaces subject the headset to considerable stress. It may therefore happen to become loose and maladjusted.

CHECKING AND READJUSTING

- Check the headset for play by placing your fingers around the upper head cup.
- Bring your weight to bear on the saddle, pull the front brakes with your other hand and push your Canyon firmly back and forth with the wheel remaining on the ground.
- If there is play in the bearing, the upper head cap will move noticeably relative to the lower cup.
- Another way to check the headset is to lift the front wheel a little off the ground and then let it drop. If there is play in the bearing, you will hear a rattling noise in this area.
- To check the bearing for ease of running, lift the frame until the front wheel no longer touches the ground. Move the handlebars from the left to the right. The front wheel should turn very easily from far left to far right without catching anywhere. A light tap on the handlebars should be enough to turn the wheel to the side.

THREADLESS HEADSET: AHEADSET®

The special feature of this system is that the stem is not encased by, but rather clamped onto the fork tube, which in this case is threadless. The stem is an important part of the headset bearings. Its clamping force secures the bearing in its set position.

- Release the clamping bolts located on the sides or rear side of the stem.
- Gently tighten a little the countersunk adjusting bolt on the top by using an Allen key.
- Realign the stem with the frame so that the handlebars are not slanted when the wheel points straight ahead.
- Retighten the clamping bolts located on the side of the stem by using an Allen key. Use a torque wrench and never exceed the maximum tightening torque! You will find the prescribed values in chapter “Recommended tightening torques”, directly on the components and/or in the manuals of the component manufacturers.
- Check the headset for play, as described on the picture on the right. Be sure not to adjust the bearing too tight.

To do the check stand in front of your Canyon and take the front wheel between your knees. Take hold of the handlebars and try to turn them relative to the front wheel. If you are able to turn the handlebars, retighten a little the clamping bolt(s) of the stem.

Adjusting the headset requires a certain amount of experience and should, therefore, be left to a skilled mechanic. If you want to try it by yourself, be sure to carefully read the operating instructions of the headset manufacturer beforehand!

Riding the bike with a loose headset increases the stress on fork and bearing. This may damage the bearing or lead to a fork break with serious consequences!

Check the secure seat of the stem after you have adjusted the bearings. Hold the front wheel between your knees and try to twist the handlebars relative to the front wheel. Otherwise, a loose stem can throw you off your bicycle.

Check the secure seat of the stem after you have adjusted the bearing! A loose stem may throw you off your bike!

Do not tighten this bolt, as it is intended for adjusting the play!

Bear in mind that by overtightening the bolts the stem can crush the steerer tube.
SUSPENSION

GLOSSARY - SUSPENSION

Spring rate or hardness:
The force required to compress the spring a given distance. A higher rate indicates a higher force requirement per unit of length. With air spring elements a higher rate means a higher pressure.

Initial spring tension:
The initial spring tension of coil springs and elastomers can be set within a certain range. This makes the suspension respond only when exposed to a higher load. The spring rate remains, however, unchanged. Heavier riders cannot compensate a too soft spring rate with a higher initial tension.

Rebound damping:
Damps / slows down the rebound.

Compression damping:
Damps / slows down the compression motion.

Sag:
The distance by which the rear shock or fork compresses (should compress) when the rider assumes his normal riding position while the bicycle is stationary.

Lockout:
Device blocking the fork or the damper from absorbing shocks thus ensuring a smooth riding on tarred roads without vibrations. A lockout must not be activated when riding off-road or downhill.

Platform damping:
Increases compression damping and helps eliminate bob. Compared to the lockout mechanism the suspension is not inactivated entirely.

THE SUSPENSION FORK

There is a clear trend in bicycle technology towards greater riding comfort and safer handling. For this reason Canyon mountain bikes are fitted with suspension forks. The suspension fork gives you better control of your Canyon when riding cross-country or on rough road surfaces. It noticeably reduces the strain on you and your bike caused by mechanical shocks. While there are various designs on the market, most suspension forks belong to the category of telescopic forks, which function similarly to the spring elements commonly used on motorbikes.

Suspension forks differ in their spring elements and in the way the damping is realised. Suspension is provided by coil springs, special types of plastic known as elastomers or sealed air compartments or combinations of these options. The damping is usually done by oil or by the self-damping properties of the elastomers.

HOW SUSPENSION FORKS WORK

When the front wheel receives an impulse, the lower fork tubes (also referred to as immersion tubes) are forced upwards. The lower fork tubes travel on thinner upper fork tubes which are fixed to the fork crown by means of a bolted connection or a glued or compression joint. The fork retracts as a spring inside is compressed. The spring allows for the fork to extend again and assume its original position. An undamped spring would instantly extend again, giving a very uncomfortable ride. The fork is equipped with an oscillation damper which prevents the fork from springing back uncontrolled and provides a smooth return travel. The telescopic forks differ in their spring elements and in the type of damping. For elasticity these forks are provided with steel or titanium springs, special types of plastic (also referred to as elastomers) or sealed air compartments or combinations of these options.

For more information see the suspension glossary heading this chapter.

Our Canyon mountain bikes are all designed to be only used with standard version or comparable suspension forks. The use of double bridge forks or of forks of differing effective lengths is not permitted. This could cause serious damage to your Canyon, even to the point of breakage, and in any case voids your guarantee. Risk of an accident!
The damping is usually afforded by oil which is enclosed in special chambers. Some models are equipped instead with friction or air damping elements.

For long uphill rides involving hard pedalling out of the saddle it is advisable to activate the lockout mechanism. On the other hand, for downhill rides on uneven ground it may be better to open the damping system more or less completely.

Adjustment and Maintenance

To ensure an optimal functioning the fork has to be adjusted to the rider’s weight and its intended purpose, even if your Canyon has been delivered with springs matching your weight. Adjusting the fork to your needs is easy, if you use a simple trick.

- Slip a cable binder onto the upper fork tube so that it can still shift easily along the tube.
- The fork should yield in general when you sit on the bike, in order to create a sag. With cross-country and marathon bikes we recommend a sag of approx. 10 - 25 %, with enduro and freeride bikes a sag of approx. 20 - 40 %. If this is not the case, you have to change the initial spring tension.
- The initial tension of forks with steel springs or elastomer filling can be adjusted to a limited degree by a turning knob located in the top area of the fork head, i.e. on the connecting piece of the upper tubes.
- With forks that use oil and air, damping is adjusted via the air pressure in the fork. The pressure must be checked at regular intervals with a special-purpose pump which is normally made available by the fork manufacturer. Be sure to observe the manufacturer’s recommendations.

ADJUSTMENT AND MAINTENANCE SUSPENSION FORK

- If the cable binder has moved along the entire travel range or if you can hear the fork bottom out, the spring is too flexible and you have to increase the initial spring tension. If the adjustment range is too small, have the springs replaced by an expert.
- The damping adjustment mechanism is often located at the top and/or bottom end of the upper fork tube, near the drop-outs or on the other fork leg. Start with maximum damping and approach the damping ideal for you in quarter to half turns.
- If the available adjustment range does not cover your needs, you have to replace the springs or shock absorbers. Many manufacturers deliver tuning and retrofitting sets. Be sure only to use components approved by the manufacturer of your fork.

Suspension forks are comparatively sophisticated components and require a considerable amount of maintenance and care. This has led almost all suspension fork manufacturers to establish service centres where customers can have their forks thoroughly checked and overhauled at regular intervals.

Almost all fork manufacturers include well-written operating instructions with their deliveries. Be sure to read these carefully before changing any settings or doing any maintenance on your fork.

- Activate the lockout-system only on smooth lanes or paths.
- A fork with a too soft damping may bring the fork to the point where it no longer rebounds when going very quickly over a number of obstacles. **Risk of an accident!**
- For more details on suspension fork adjustment and maintenance visit the following websites:
 - www.centurion.de
 - www.manitoumtb.com
 - www.rockshox.com
 - www.sportimport.de
 - www.foxracingshox.com
 - www.toxoholics.de

The suspension fork should be set up and adjusted in such a way that it does not reach the end of its travel (known as bottom out). A spring rate which is too soft (or too low an air pressure) can usually be heard or felt as a “clunk” type noise. This noise is caused by the sudden complete compression of the suspension fork as it reaches bottom out. If the suspension fork frequently reaches bottom out, it will become damaged over time, and so will the frame.
The following routines are essential for suspension fork maintenance:

- Whatever type of fork you have, make sure the sliding surfaces of the upper fork tubes are absolutely clean. Clean the fork with water and a soft sponge after every ride. After washing your bicycle, spray the stanchion tubes of the suspension fork with a little grease spray or apply a very thin film of hydraulic oil. Do not use a steam jet or aggressive cleaning agents!
- Make it a rule to check all bolted connections of your fork at regular intervals.

Suspension forks are constantly being sprayed with water and dirt from the front wheel. Clean them with lots of water after every ride.

Please read the enclosed manual of the fork manufacturer or visit the according website.

Suspension forks are of sophisticated design. Leave all maintenance and repair work to a service centre authorized by the fork manufacturer. Use a suitable torque wrench and observe the manufacturer’s torque settings when checking the bolted connections on your suspension fork!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are of sophisticated design. Leave all maintenance and repair work to a service centre authorized by the fork manufacturer. Use a suitable torque wrench and observe the manufacturer’s torque settings when checking the bolted connections on your suspension fork!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!

Suspension forks are designed in a way to absorb shocks. If the fork is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. If your bicycle is equipped with a suspension fork including lockout, you should keep in mind not to activate the lockout function when riding over rough terrain, but only when riding over smooth terrain (tarrad roads, smooth tracks).

When buying a new tyre for your front wheel, make sure it is not too high. Otherwise it might drag along the fork crown with a completely compressed fork. The front wheel might get jammed. Risk of an accident!
The spring should be dimensioned and adjusted in such a way that the rear shock never bottoms out. A spring which is too pliable makes itself felt and usually also clearly heard by the hard shocks caused by the sudden complete compression of the shock absorber. If the rear shock frequently bottoms out, it will sustain damage in the long term, as will the frame.

Adjust the initial spring tension in a way that your Canyon yields by approx. 10 – 25 % when you sit on the saddle of a cross-country and marathon bike and by approx. 20 – 40 % when you sit on the saddle of an enduro and freeride bike.

The damping is adjusted by valves inside. These valves are designed to modify the flow rate of the oil and hence the speed with which the rear shock moves in and out. In this way it is possible to optimise the response of your Canyon to obstacles. Furthermore, any oscillatory movement of the rear frame while pedalling can be reduced. For long uphill rides involving hard pedalling in sitting it may be advisable to close, i.e. to eliminate the damping.

On the other hand, for downhill rides on uneven ground it may be better to open the damping system more or less completely.

Try approaching the exact setting you need in half or quarter turns.

- If your rear shock has steel springs, turn the knurled ring on the spring clockwise (line of vision from the adjusting ring to the spring) to increase the initial spring tension. If you cannot turn the ring on its own, take hold of the spring with your whole hand and turn it together with the knurled adjusting ring.
- Air-cushioned rear shocks are adjustable via the air pressure. Only use the pump provided for this purpose by the rear shock manufacturer and observe the specified pressure.
- On most rear shocks you can adjust the damping externally by means of a handwheel. This enables you to change the section of the valves in the oil bath and hence the oil flow rate and volume. Turn the handwheel in small steps and check the rear shock’s response to these changes.
- Some models provide for separate adjustment of compression and rebound damping. Experience has shown that it is best to start with compression damping entirely open and to vary rebound damping first. Rebound damping is generally considered satisfactory when the rear frame rebounds once after descending from a high kerb. Finish by adjusting the compression damping. You will notice the difference by the speed with which the saddle retracts.

Take your Canyon for a test ride on different kinds of surface. If the rear shock bottoms out several times, the spring rate or the ratio of the suspension mechanism have to be changed:

- Steel springs come with different spring rates. Replacing the springs is a job best left to an expert.
- On an air spring rear shock the air pressure has to be increased. Be sure to observe the manufacturer’s specifications.

Do not ride your Canyon, if the rear shock bottoms out.

Almost all manufacturers deliver their shock absorbers or rear shocks with well-written operating instructions enclosed. Be sure to read them carefully before changing any settings or doing any maintenance work.

For more details on the adjustment of your rear shock visit the websites of the following manufacturers:

- www.rockshox.de
- www.sportimport.de
- www.dtswiss.com
- www.manitoumtb.com
- www.centurion.de
- www.foxracingshox.com
- www.toxoholics.de

With steel springs the spring tension is altered with the knurled adjusting ring.

Air dampers are adjusted by modifying the air pressure.

If you need to turn the adjusting ring of a steel spring by more than three to four turns to adjust the initial spring tension, read the enclosed manual of the rear shock manufacturer. There may be the need to replace the spring by another model.

Activate the lockout-system only on smooth lanes or paths.

Rear shocks are constantly being sprayed with water and dirt from the rear wheel. Clean them with lots of water after every ride.
TRANSPORT OF YOUR CANYON BIKE

TAKING YOUR CANYON BY CAR

There are several ways of transporting your Canyon by car. Canyon recommends putting the bike into the boot to take it with you.

- Bikes do take away a lot of space inside a boot, but they are also better protected against dirt, theft and damage.
- Take, however, care that the cables, lights and wires and in particular the gears do not get damaged. Protect your Canyon with padding material, such as blankets or the like. This is also a good idea, when your bike is heavily soiled, so that the dirt does not wipe off on the seat upholstery.
- Make sure to secure your bike.
- Do not pull on the brake lever after dismounting a wheel with a disc brake. This could cause the brake pads to come closer, making it difficult to remount the wheel at a later date. Push the transport fittings into the brake calipers. Finish by actuating the brake levers and securing them with a rubber band or a strap.

If transporting the bicycle inside the boot is impossible, nearly every car accessory dealer and car company offers carrier systems which allow bicycle transport without disassembly. The usual design involves rails fixed to the roof of the car onto which the bicycles are fixed with clamps gripping the down tubes.

- Never transport bicycles with disc brakes upside down. This could allow air to enter the system, making the brakes ineffective. Risk of an accident!

- Secure your Canyon when transporting it inside a car. In the event of an accident unsecured loads inside a car may be an additional risk for the occupants. Often you will find it necessary to dismount one or even both wheels to load the bike into the car. Be sure to read chapter “The wheels”, notably section “Repairing punctures”, before removing a wheel.

- Do not use a carrier system on which the bike has to be mounted upside down, i.e. with the handlebars and saddle fixed face down to the carrier. This way of fastening the bike exposes handlebars, stem, saddle and seat post to extreme stress during transport and can lead to failure of these parts! Do not buy a bike carrier system where the front wheel has to be removed and your Canyon is secured by the fork. Suspension forks are particularly susceptible to breakage when fastened in this manner. Suspension forks are particularly susceptible to breakage when fastened in this manner.

- Transporting Canyon mountain bikes on conventional bike carriers with clamps is not permitted. Most clamps are potential sources of damage to large-diameter frame tubes! Carbon frames are particularly susceptible to being damaged irreparably. Unvisible damage occurring on this occasion may lead to severe crashes.

- Rear carriers are becoming more and more popular. Their big advantage over roof carriers is that you do not have to lift up the bicycles so high to attach them. Make sure the fastenings do not create any damage to the fork or frame. Risk of breakage!

- Whatever system you opt for, make sure it complies with the relevant safety standards of your country!

TAKING YOUR CANYON BY PLANE

If you intend to take your Canyon with you when you go on a trip by plane, pack it into the BikeGuard or BikeShuttle.

Pack the wheels in special wheel bags to protect them inside the suitcase or cardboard box. Do not forget to take the necessary tools, a torque wrench, bits and this manual with you to be able to assemble the bicycle and to get it ready for use at your destination.

- In the event your Canyon has not been packed for dispatch according to the enclosed packing instructions, you have no right to claim repair of possibly occurring transport damage from Canyon Bicycles GmbH.

- Please make sure the lights and the number plate of your car are not hidden from view. For some carriers a second exterior rear view mirror is required by the road traffic regulations.

- Bear in mind that your car has a greater overall height with the bicycle on it. Measure the overall height and place a sign stating the height somewhere in the cockpit or on the steering wheel so that it can be easily seen.

- Read the operating instructions of your bicycle carrier and observe the maximum load capacity and recommended or prescribed driving speed.

- Check whether your bicycle is properly fastened before and at regular intervals during the ride. A bicycle that detaches from the roof carrier may endanger other road users.
GENERAL NOTES ON CARE AND INSPECTION

Your Canyon is a product of high quality and technology. Nevertheless, as with other types of vehicles, you should still see to it regularly and have an expert do the scheduled maintenance work.

Lightweight bikes need to have their safety-relevant components replaced regularly (see chapter “Service and maintenance schedule”). This is essential to ensure the safe and sustained functioning of all components and for your bike to give you many years of riding enjoyment and safety.

WASHING AND CLEANING YOUR CANYON

Dried sweat, dirt and salt from riding during the winter or in sea air harm your Canyon. You should therefore make a habit of regularly cleaning all the components of your Canyon and protecting them from corrosion.

Do not clean your Canyon with a steam jet. This cleaning method is quick, but it entails serious drawbacks. As the water is ejected at high pressure in a narrowly focussed jet, it may pass through seals and penetrate bearings. This leads to the dilution of lubricants and consequently to greater friction and onset of corrosion. This destroys and impairs the functioning of the bearing races in the long term. Steam jet treatment also tends to abrade stickers.

A much more gentle way of cleaning your Canyon is with a soft water jet and/or with a bucket of water and a sponge or large brush. Cleaning your Canyon by hand has another positive side-effect in that it enables you to discover defects in the paint or worn or defective components at an early stage.

After drying your Canyon you should polish its coating and metal surfaces with hard wax (except for the rotors). Apply the hard wax also to spokes, hubs, bolts and nuts etc. Use a hand-held atomizer for parts with small surfaces. Polish waxed surfaces with a soft cloth to give them a nice shine and make them water repellent.

Inspect the chain after you have finished cleaning and grease it, if necessary (see chapter “The gears”, notably section “Chain maintenance”).

When working on your Canyon restrict yourself to jobs for which you are equipped and have the necessary knowledge.

Do not clean your Canyon with a strong water or steam jet from a short distance.

Protect the upward facing part of the chainstay and any places where cables might rub with foil or the like. This will avoid any unpleasant scratches and abrasion marks.

Before applying any hard wax on the frame of your Canyon, be sure to test it in a less visible spot first!

While cleaning, look for cracks, scratches, dents, as well as bent or discoloured material. If you are in doubt, please call our service hotline at +44 (0) 20 8501 2582. Have defective components replaced immediately and touch up paint defects.

Finish cleaning your Canyon by lubricating the chain.

Keep the brake pads and the rotor free of cleaning agents and chain oil, as the brakes could fail otherwise (see chapter “The brake system”)! Keep carbon clamping areas, such as handlebars, stem, seat post and seat tube, free of grease and oil.

Remove tough oil or grease stains with a petroleum-based cleaning agent. Never use degreasing agents containing acetone, methyl chloride etc., non-neutral, chemical or solvent-containing cleaning agents that could attack the surface!
SAFEKEEPING AND STORING YOUR CANYON

If you regularly look after your Canyon during the season, you will not need to take any special precautions when storing it for a short time, apart from securing it against theft. It is advisable to store your Canyon in a dry and airy place.

There are some things to bear in mind when putting your Canyon away for the winter:

- Inflated inner tubes tend to gradually lose air when the bike is not used for a long time. If your Canyon is left standing on flat tyres for an extended period, this can cause damage to the structure of the tyres. It is therefore better to hang the wheels or the entire bike or to check the tyre pressure regularly.
- Clean your Canyon and protect it against corrosion as described above.
- Dismount the saddle and allow for any moisture that may have entered to dry away. Spray a little finely atomized oil into the seat tube (except for carbon frames).
- Store your Canyon in a dry place.
- Switch the gear to the smallest chainring and the smallest sprocket. This relaxes the cables and springs as much as possible.

SERVICING AND INSPECTION

First service:
A special maintenance schedule has been developed by our experienced technicians. On the first kilometres/miles, for example, the wheels may be subject to a certain bedding in process or bowden and brake cables may stretch, making gear shifting imprecise. Depending on how much you cycle, the repair of worn down parts may be necessary already. In this case you will be contacted by a service technician beforehand.

Regular annual service:
Following a long and challenging season we recommend that you have your bike thoroughly checked. Who could do this better than those who have built your bike?

The annual service will be carried out by our skilled staff according to a maintenance schedule tailored to your bicycle type.

Canyon safety check:
If you ride your Canyon clearly less than 1,000 km (620 miles) a year, it requires correspondingly less servicing. In this case the Canyon safety check is exactly what you need. Our specialists have developed an extra schedule for this demand-oriented maintenance. This schedule includes less routines than an annual service, however all safety-relevant issues. We recommend that you have this check carried out before setting off into the new bike season or before going on a bike trip so that you can take off without a care.

Please make an appointment in advance to ensure that your Canyon runs through this check as quickly as possible.

If your Canyon has carbon rims, do not hang it on the rims! Risk of breakage!

Check the tyre pressure at regular intervals

Hang your Canyon for an extended storing period

Store the bike with the chain on outmost sprocket and smallest chainring
SERVICE AND MAINTENANCE SCHEDULE

After the bedding-in period you need to have your bike serviced by an expert at regular intervals. The intervals given in the schedule below are supposed to be guidelines for cyclists who cycle around 750 to 1,500 kilometres or 460 to 930 miles a year (around 50 to 100 hours). If your Canyon does harder service, either because your mileage is consistently greater or because you ride a great deal on poor road surfaces, it will require correspondingly shorter service intervals.

<table>
<thead>
<tr>
<th>Component</th>
<th>What to do</th>
<th>Before every ride</th>
<th>Monthly</th>
<th>Annually</th>
<th>Other intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td>Check</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyre equipment</td>
<td>Check pressure</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyre equipment</td>
<td>Check tread and side walls</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brakes (disc)</td>
<td>Check wear of brake pads</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake cables/lines</td>
<td>Visual inspection</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear shock</td>
<td>Service</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension fork</td>
<td>Check bolts</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension fork</td>
<td>Change oil, service</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fork (aluminium and carbon)</td>
<td>Check</td>
<td>x</td>
<td>At least every 2 years</td>
<td>x</td>
<td>after fail or 3 years</td>
</tr>
<tr>
<td></td>
<td>Replace</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom bracket</td>
<td>Check bearing play</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom bracket</td>
<td>Regrease</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Chain</td>
<td>Check and/or lubricate</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain</td>
<td>Check and/or replace</td>
<td>x</td>
<td>After 750 km (460 miles)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crank</td>
<td>Check and/or retighten</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating</td>
<td>Polish</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheels/ spokes</td>
<td>Check wheel trueness and tension</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheels/ spokes</td>
<td>True and/or retrue</td>
<td>x</td>
<td></td>
<td></td>
<td>If necessary</td>
</tr>
<tr>
<td>Handlebar and stem carbon and aluminium</td>
<td>Check</td>
<td>x</td>
<td>At least every 2 years</td>
<td>x</td>
<td>after fail or 3 years</td>
</tr>
<tr>
<td>Metal surfaces</td>
<td>Polish (except for rotors)</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hubs</td>
<td>Check bearing play</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hubs</td>
<td>Regrease</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedals</td>
<td>Check bearing play</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedals</td>
<td>Clean locking mechanism</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear derailleur/ Front derailleur</td>
<td>Clean, grease</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick-release</td>
<td>Check seat</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolts and nuts</td>
<td>Check and/or retighten</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valves</td>
<td>Check seat</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem/ seat post</td>
<td>Dismount and regrease or reapply carbon assembly paste</td>
<td>(Caution: Do not grease carbon parts)</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gear/ brakes cables</td>
<td>Remove and grease</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jobs marked “•” you should be able to do yourself, provided you have a certain degree of manual skill, a little experience and suitable tools, this including e.g. a torque wrench. If you come across any defects, take appropriate measures without delay. If you have any questions, please call our service hotline at +44 (0) 20 8501 2582.

Jobs marked “x” should be left to an experienced and skilled bicycle expert (e.g. in an authorized, specialist bicycle workshop). Feel free to call our service hotline at +44 (0) 20 8501 2582.
RECOMMENDED TIGHTENING TORQUES

<table>
<thead>
<tr>
<th>Component</th>
<th>Bolted connection</th>
<th>Shimano*</th>
<th>SRAM **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear derailleur</td>
<td>Fastening bolt</td>
<td>8-10 Nm</td>
<td>8-10 Nm</td>
</tr>
<tr>
<td></td>
<td>Cable fixing bolt</td>
<td>5-7 Nm</td>
<td>4-5 Nm</td>
</tr>
<tr>
<td></td>
<td>Pulley bolt</td>
<td>3-4 Nm</td>
<td></td>
</tr>
<tr>
<td>Front derailleur</td>
<td>Fastening bolt</td>
<td>5-7 Nm</td>
<td>5-7 Nm</td>
</tr>
<tr>
<td></td>
<td>Cable fixing bolt</td>
<td>5-7 Nm</td>
<td>5 Nm</td>
</tr>
<tr>
<td>Shift lever</td>
<td>Fastening bolt for gear shifter pod</td>
<td>5 Nm</td>
<td>2.5-4 Nm</td>
</tr>
<tr>
<td></td>
<td>Hole covering</td>
<td>0.3-0.5 Nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clamp fixing bolt (Allen bolt)</td>
<td>5 Nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cable stop on frame</td>
<td>1.5-2 Nm</td>
<td></td>
</tr>
<tr>
<td>Hub</td>
<td>Quick-release lever</td>
<td>5-7.5 Nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Counter nut for bearing adjustment with quick-release hubs</td>
<td>10-25 Nm</td>
<td></td>
</tr>
<tr>
<td>Free-wheel hub</td>
<td>Sprocket cluster lock ring</td>
<td>30-50 Nm</td>
<td>40 Nm</td>
</tr>
<tr>
<td>Crank set</td>
<td>Crank fixing bolt (cotterless, grease-free)</td>
<td>35-50 Nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crank fixing bolt (Shimano Octalink)</td>
<td>35-50 Nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crank fixing bolt (Shimano Hollowtech II)</td>
<td>12-15 Nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crank fixing bolt Isis</td>
<td></td>
<td>31-34 Nm</td>
</tr>
<tr>
<td></td>
<td>Crank fixing bolt Gigapipe</td>
<td></td>
<td>48-54 Nm</td>
</tr>
<tr>
<td></td>
<td>Chainring bolt</td>
<td>8-11 Nm</td>
<td>12-14 Nm (steel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-9 Nm (alu)</td>
</tr>
<tr>
<td>Sealed cartridge</td>
<td>Shell Shimano Hollowtech II</td>
<td>35-50 Nm</td>
<td>34-41 Nm</td>
</tr>
<tr>
<td></td>
<td>SRAM Gigapipe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom bracket</td>
<td>Octalink</td>
<td>50-70 Nm</td>
<td></td>
</tr>
<tr>
<td>Pedal</td>
<td>Pedal axle</td>
<td>35 Nm</td>
<td>31-34 Nm</td>
</tr>
<tr>
<td>Shoe</td>
<td>Cleat bolts</td>
<td>5-6 Nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spike</td>
<td>4 Nm</td>
<td></td>
</tr>
<tr>
<td>Seat post</td>
<td>Fixing bolt of seat clamp at seat post head</td>
<td>20-29 Nm ***</td>
<td></td>
</tr>
</tbody>
</table>

* www.shimano.com
** www.sram.com
*** These are guide values given by the above-mentioned component manufacturers. Observe any values given in the component manufacturers' operating instructions.
Canyon Frame:
- Bottle cage bolts: 4.5 Nm
- Replaceable derailleur hanger: 1.5 Nm

Canyon seat post clamp:
- 3-5 Nm

If your mountain bike is equipped with a quick-release lever, read chapter “How to use quick-releases and thru axles”.

Please use the following torques, unless otherwise indicated by the stem or seat post manufacturer on the component itself or in the respective assembly instructions.

Stem:
- M5 bolts: 4.5-5.5 Nm
- M6 bolts: 8-9.6 Nm
- Adjusting bolt (on top): 0.5-2 Nm

Seat post:
- Saddle clamp at seat post head
 - Seat posts with single bolt: 20-24 Nm
 - Seat post with two bolts in line: 6-9 Nm
 - Seat post with two bolts side-by-side in direction of motion: 12-14 Nm
 - Seat post Monorail: 8 Nm

Disc Brakes

<table>
<thead>
<tr>
<th></th>
<th>Shimano</th>
<th>Magura</th>
<th>Avid</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake caliper bolt at frame/fork</td>
<td>6-8 Nm</td>
<td>6 Nm</td>
<td>5-7 Nm (RW)</td>
<td>9 Nm</td>
</tr>
<tr>
<td>Brake lever clamp bolt</td>
<td>6-8 Nm</td>
<td>4 Nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-bolt clamping</td>
<td>4-5 Nm</td>
<td>4 Nm</td>
<td>2.8-3.4 Nm (Juicy 5)</td>
<td>2.5 Nm</td>
</tr>
<tr>
<td>Double-bolt clamping</td>
<td></td>
<td>2.5 Nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleeve nuts on brake lines near lever and normal brake line on caliper</td>
<td>5-7 Nm</td>
<td>4 Nm</td>
<td>5 Nm alu clamping</td>
<td>5 Nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.8 Nm steel clamping</td>
<td></td>
</tr>
<tr>
<td>Barbed fittings for brake lines at brake caliper (disc tube)</td>
<td>5-7 Nm</td>
<td>6 Nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap bolt</td>
<td>0.3-0.5 Nm</td>
<td>0.6 Nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setscrew for bleeder hole</td>
<td>4-6 Nm</td>
<td>2.5 Nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor bolts on hub</td>
<td>4 Nm</td>
<td>4 Nm</td>
<td>6.2 Nm</td>
<td>5.75 Nm</td>
</tr>
<tr>
<td>Brake cable connection to brake lever</td>
<td></td>
<td></td>
<td>8 Nm</td>
<td></td>
</tr>
</tbody>
</table>

- All bolted connections on the components of your Canyon have to be tightened carefully and checked regularly to ensure the safe operation of your bike. This is best done with a torque wrench that switches off as soon as the desired torque has been reached. Tighten the bolts carefully by approaching the maximum permissible torque in small steps. Check the secure seat of the component, as described in the relevant chapters. For parts without torque specifications, tighten the bolts gradually and check in between whether the component is already fastened sufficiently, as described in the relevant chapters. Do not exceed the maximum torque.

- Some components are directly marked with the necessary tightening torque. Strictly observe the torques given on the labels or imprints.

- Be sure to always follow the operating instructions of the component manufacturer when doing any work at the brake system.

- With steerer tubes made of carbon (black-coloured) tighten the stem with a maximum torque of 6 Nm.

- Also read the enclosed manuals of the component manufacturers, if necessary, or visit the Canyon website at www.canyon.com
LEGAL REQUIREMENTS FOR RIDING ON PUBLIC ROADS

In Great Britain (as of January 2011)

According to the Highway Code in Great Britain your bicycle must be fitted as follows:

1. Lighting, rear lights, reflectors:
 At night the bicycle must be fitted with the following lighting:
 - front light, white
 - rear light, red
 - pedal reflectors, amber (for all bicycles manufactured after October 1, 1985)
 In addition, it should be fitted with:
 - front reflector, white
 - spoke reflectors
 [Law RVLR regs 13, 18 & 24]

 It is not required that the prescribed lighting is mounted upon sale of the bicycle. If it is, however, it must comply with these regulations.

 Bicycles that are only used with good daylight visibility, such as e.g. road racing bicycles, are exempt from the lighting regulations.

2. Signalling devices
 It is recommended that a bell be fitted.

3. Cycle helmets
 Wearing a cycle helmet is not compulsory.

4. Taking Children with You
 There are no rules as to the transport of children with bicycles.

5. Trailers
 There are no rules as to the usage of trailers.

6. Other issues
 Using cycle lanes is not compulsory.

In order for your claims to be processed smoothly it is necessary that you present your receipt. Therefore, please keep your receipt in a safe place.

To ensure a long service life and good durability of your bike only use it for its intended purpose (see chapter “Intended use”). Also observe the permissible load specifications and the instructions on transporting baggage and children (see chapter “Intended use”). The manufacturers’ assembly instructions (above all the torque settings for bolts) and the prescribed maintenance intervals must be strictly followed, as well. Please observe the tests and routines listed in this manual or in any other manual enclosed with this delivery (see chapter “Service and maintenance schedule”) as well as any instructions as to the replacement of safety-relevant components, such as handlebars, brakes etc.

We wish you safe and happy cycling wherever your bike takes you. If you have any questions, please call our service hotline at +44 (0) 20 8501 2582.

For further information see:
http://www.adfc.de
http://www.direct.gov.uk/
http://www.dft.gov.uk
http://www.ctc.org.uk/
(Cyclists’ Touring Club)

WARRANTY

Your bike was manufactured with care and delivered to you largely preassembled. We are obliged by law to guarantee that your bike is free of any defects which considerably reduce its value or fitness for use or make it worthless or useless. You have full warranty rights within the first two years after purchase. We are your contact in the event of defects and you can get in touch with us at the stated address.

In order for your claims to be processed smoothly it is necessary that you present your receipt. Therefore, please keep your receipt in a safe place.

To ensure a long service life and good durability of your bike only use it for its intended purpose (see chapter “Intended use”). Also observe the permissible load specifications and the instructions on transporting baggage and children (see chapter “Intended use”). The manufacturers’ assembly instructions (above all the torque settings for bolts) and the prescribed maintenance intervals must be strictly followed, as well. Please observe the tests and routines listed in this manual or in any other manual enclosed with this delivery (see chapter “Service and maintenance schedule”) as well as any instructions as to the replacement of safety-relevant components, such as handlebars, brakes etc.

We wish you safe and happy cycling wherever your bike takes you. If you have any questions, please call our service hotline at +44 (0) 20 8501 2582.

For further information see:
http://www.adfc.de
http://www.direct.gov.uk/
http://www.dft.gov.uk
http://www.ctc.org.uk/
(Cyclists’ Touring Club)

WARRANTY AND GUARANTEE

The rear shock mountings of full-suspension frames are designed in a way to absorb shocks, what is absolutely necessary. If the rear shock is too rigid and jammed, the terrain induced shocks pass directly into the frame without any damping. The frame is normally not designed to withstand such undamped stresses. Please note that shock absorbers with lockout function must not be used in rough terrain, but only on smooth surfaces (roads, smooth trails) when the lockout function is activated.

Enclosed with the delivery you will find the operating instructions of the component manufacturers. Here you will find all details about use, maintenance and care. This manual contains multiple references to these specific and detailed operating instructions. Please make sure the individual operating instructions for clipless pedals and gear and brake components are in your possession and keep them in a safe place together with this leaflet and the manual.

Carbon is a composite material which is used for weight-optimised designs. Surface irregularities on carbon components (small bolts and pores) are unavoidable for reasons inherent in the manufacturing process. This does not constitute a defect.
A NOTE ON WEAR

Some components of your bike are subject to wear due to their function. The rate of wear depends on care and maintenance as well as on the way you use your bike (kilometres travelled, rides in the rain, dirt, salt etc.). Bikes that are often left standing in the open may also be subject to increased wear through weathering.

These components require regular care and maintenance. Nevertheless, sooner or later they will reach the end of their service life, depending on conditions and intensity of use.

Parts that have reached their limit of wear must be replaced. This applies to the following parts:
- chain,
- cables,
- grip coverings or bar tape,
- chainrings,
- sprockets,
- pulleys,
- gears cables,
- tyres,
- saddle covering (leather) and
- brake pads.

The brake pads of disc brakes are subject to wear due to their function. If you use your bike for competitive cycling or in hilly terrain, they may have to be replaced quite frequently. Regularly check the condition of the pads and have them replaced by a dealer.

BEARINGS AND REAR SHOCKS OF FULL-SUSPENSION FRAMES

Rear shocks and full-suspension frames are to some extent subject to wear due to their function. This applies in particular to the seals of the rear shock and the bearings of the rear frame. Overtightened rear shock fastening bolts subject the frame to extreme stress and can lead to consequential damage. Therefore, observe the assembly instructions and use a torque wrench.

GUARANTEE

Over and above the statutory warranty we give a voluntary guarantee of altogether 6 years on mountain bike frames (except for bearings and rear shocks).

This guarantee runs from the date of purchase and only applies to claims made by the initial buyer. It does not cover paint damage. We reserve ourselves the right to repair defective frames or forks or to replace them with the relevant successor model. These issues can be claimed under guarantee only. Additional costs, such as assembly and transport costs etc, shall not be borne by us.

The guarantee does not cover damage caused by improper or other than the intended use, such as neglect (poor care and maintenance), crashes, overloading or resulting from changes made to the frame or fork or from the mounting or remounting of additional components. Damage resulting from jumps or other types of overstress are likewise not covered by the guarantee.

WARRANTY AND GUARANTEE

Over and above the statutory warranty we give a voluntary guarantee of altogether 6 years on mountain bike frames (except for bearings and rear shocks).

This guarantee runs from the date of purchase and only applies to claims made by the initial buyer. It does not cover paint damage. We reserve ourselves the right to repair defective frames or forks or to replace them with the relevant successor model. These issues can be claimed under guarantee only. Additional costs, such as assembly and transport costs etc, shall not be borne by us.

The guarantee does not cover damage caused by improper or other than the intended use, such as neglect (poor care and maintenance), crashes, overloading or resulting from changes made to the frame or fork or from the mounting or remounting of additional components. Damage resulting from jumps or other types of overstress are likewise not covered by the guarantee.

Canyon mountain bikes are high-end sports equipment, representing lightweight construction as pinnacle of engineering. Also be a professional when it comes to handling of the material. Misuse, unprofessional assembly or insufficient servicing can render the racing machine unsafe. Risk of an accident!
CRASH REPLACEMENT

In the event of an accident or severe crash, the high forces exerted on the frame and the fork can lead to structural failure during subsequent use. With our Crash Replacement (CR) program we offer you the opportunity to replace your damaged Canyon frame at a greatly reduced cost. This offer is valid up to three years after the date of purchase. You'll receive the same or a similar frame (without add-on parts such as seat post, front derailleur, rear shock or stem) from our current product range.

The CR-service is limited to the original owner and to damages that compromise the functionality of the bike. We reserve the right to suspend this service if we detect that the damage has been caused unreasonably.

In order to claim the CR-service, please contact our service hotline at +44 (0) 20 8501 2582.

For more details visit our website at www.canyon.com

For more information about the use, read chapter “Intended use”.

Canyon Bicycles GmbH / Karl-Tesche-Straße 12 / D-56073 Koblenz
Showroom - opening hours: Mon – Fri 10.00am – 7.00pm; Sat 9.00am – 6.00pm
Order and information hotline: +44 (0)20 8501 2582 / Order-fax: +49 (0)261 4040050 / E-Mail: info@canyon.com
Workshop hours: Mon – Fri 9.00am – 6.00pm; Sat 9.00am – 3.00pm